Английский Биология География

Рентгеноструктурный анализ вещества. Рентгеноструктурный анализ - изучение структуры веществ

В настоящее время рентгенофазовый анализ (рентгенография, или дифракция рентгеновских лучей) является самым распространенным из дифракционных методов анализа. Следует отметить, что дифракционные методы применяются для изучения структуры не только твердых кристаллических веществ, но и жидкостей, и стекол. Жидкости и стекла, в которых существует определенная флуктирующая статистическая упорядоченность структурных элементов, также характеризуются неравномерностью рассеивания. При этом количество и резкость максимумов возрастает по мере перехода вещества в кристаллическое состояние.

Рентгенография основана на получении и анализе дифракционной картины, возникающей в результате интерференции рентгеновских лучей, рассеянных электронами атомов облучаемого объекта.

Явление интерференции рентгеновских лучей, рассеяных кристаллом, приводит к таким же результатам, какие дает зеркальное отражение лучей от атомных плокостей кристалла рис. 4.5.

Рис. 4.5. Отражение рентгеновских лучей

от атомных плоскостей кристалла:

q − угол скольжения (брегговский угол);

a − угол падения; d 1 , d 2 − межплоскостные расстояния

Отраженные лучи распространяются в единой фазе (интенсивность возрастает), если соблюдается уравнение Вульфа − Брегга:

n ∙ l = 2d sinq,

где n − порядок отражения; l − длина волны рентеновского луча; d − расстояние между атомными плоскостями кристалла; q − угол скольжения пучка лучей.

При изменении угла скольжения, когда уравнение Вульфа − Брегга не соблюдается, отраженные лучи распространяются в разных фазах и гасят друг друга.

Очевидно, что максимумы интенсивности отраженных лучей будут наблюдаться при различных значениях угла q для семейства плоских сеток с разными значениями d . Каждое кристаллическое вещество имеет индивидуальный набор семейств плоских сеток, следствием чего является индивидуальность дифракционной картины, т. е. распределение интенсивностей отражения в зависимости от значения угла q. Поэтому запись дифрактограммы и ведется в координатах I − q (интенсивность отраженных лучей − угол скольжения).

Для получения пучка рентгеновских лучей используют рентгеновские трубки (рис. 4.6), в которых рентгеновские лучи возникают в результате торможения электронов на металлическом аноде. Поток электронов, испускаемых вольфрамовой нитью и ускоренных в поле напряжения 30 кВ, бомбардирует металлическую мишень − анод рентгеновской трубки (из меди, кобальта или железа). Энергия первичных электронов достаточна для выбивания 1−S электрона (K − оболочка меди, рис. 4.7).

Рис. 4.6. Схема рентгеновской трубки:

1 − анод; 2 − вольфрамовая нить; 3 − окно

из Ni фольги; 4 − рентгеновский луч

Рис. 4.7. Возникновение CuK a −излучения

Электроны с внешних орбиталей немедленно переходят на освободившееся место, т. е. на внутренний 1s-уровень. Выделяющаяся при этом энергия испускается в виде рентгеновского излучения. Энергия такого перехода − строго фиксированная величина.

Для меди возможны два типа переходов: 2р ® 1s (K a -излучение; l = 1,5418 Å) и 3р ® 1s (K b -излучение; l = 1,3922 Å). Переходы первого типа происходят гораздо чаще, поэтому K a -излучение, более интенсивное. Для первичного рентгеновского луча желательно отфильтровать лучи с другими длинами волн, оставив лишь K a -излучение. Для этих целей применяется Ni-фольга, задерживающая K b -излучение.

У железного анода K a -излучение соответствует длине волны 0,1936 нм.

Существует три классических метода получения дифракционного эффекта от кристалла:

1) полихроматический метод (метод Лауэ), основанный на использовании сплошного спектра рентгеновкого излучения;

2) метод вращающегося монокристалла, основанный на использовании монохроматического излучения;

3) метод порошка (метод Дебая − Шеррера), в котором условия дифракции монохроматического рентгеновского излучения обусловлены большим числом различно ориентированных систем плоскостей.

Следует отметить, что в методах 1 и 2 необходимо использовать монокристаллический образец исследуемого вещества. Поскольку в реальности наиболее часто получаются вещества, обладающие поликристаллическим строением, то особенно важным с практической точки зрения становится метод 3.

Для регистрации дифракционной картины и угла дифракции в методе порошков используют несколько типов съемки, в настоящее время наиболее часто используются дифрактометры марки «ДРОН», общая схема которого представлена на рис. 4.8.

Рис. 4.8. Схема дифрактометра:

1 − рентгеновская трубка; 2 − диафрагма;

3 − образец; 4 − гониометр; 5 − счетчик;

6 − окружность движения счетчика

Образец находится в центре окружности постоянного радиуса, по которой движется счетчик. При этом образец вращается одновременно со счетчиком. Угловая скорость вращения счетчика в два раза превышает угловую скорость вращения образца. Таким образом, если образец поворачивается на некоторый угол q, то угол поворота счетчика составляет 2q. Рентгеновское излучение, отразившись от образца, попадает в счетчик, где преобразуется в электрический сигнал (в счетчике Гейгера − Мюллера используется способность рентгеновских лучей ионизировать газ). Записывается рентгенограмма в координатах I − 2q. В качестве примера ниже приведены рентгенограмма низкотемпературного кварца (рис. 4.9).

Рис. 4.9. Рентгенограмма низкотемпературного кварца

По характеру решаемых задач различают два вида рентгенографичского анализа:

− рентгеноструктурный анализ (РСА), предназначенный для определения параметров и качественных характеристик кристаллической решетки анализируемого вещества;

− рентгенофазовый анализ (РФА), состоящий в определении существования фаз (качественный анализ) и их относительного содержания в анализируемом образце (количественный анализ).

Рентгеноструктурный анализ. При исследовании структуры кристаллического вещества возникают следующие задачи:

− определение размера и формы элементарной ячейки кристаллической решетки, а следовательно, и количества атомов, приходящихся на каждую ячейку;

− определение конкретного положения (координаты) каждого симметрически независимого атома ячейки;

− определение констант тепловых колебаний атомов и распределения электронной плотности по атомам и между ними.

Рентгеноструктурный анализ является одним из наиболее информативных методов изучения кристаллических веществ.

Рентгенофазовый анализ. Большинство материалов состоит из нескольких фаз. Расшифровка качественного фазового состава и количественного соотношения разных фаз, определение типа и состояния твердых растворов, их возможной предельной концентрации являются наиболее распространенными материаловедческими задачами рентгенофазового анализа.

В общем рентгенофазовый анализ основан на двух положениях:

− каждая фаза дает присущий только ей (независимо от присутствия других фаз) набор дифракционных линий;

− интенсивность линий пропорцианальна содержанию фазы.

Характеристикой анализа является его чувствительность − минимальное количество вещества, при котором еще заметна самая сильная (реперная) линия. В основном чувствительность РФА не превышает нескольких процентов, так, например, для клинкерных минералов она составляет 2−3%.

Рентгенограмма многофазной системы представляет собой результат наложения рентгенограмм отдельных фаз. В случае, если содержание фазы невелико, то она будет представлена лишь ограниченным числом наиболее интенсивных линий.

Расшифровка рентгенограмм заключается в определении значений межплоскостных расстояний d по дифракционным максимумам и сравнительной интенсивности последних I .

Для расчетов значений межплоскостных расстояний устанавливается точное значение углов (2q) для дифракционных пиков (по их максимуму) и по соответствующим таблицам определяется значение межплоскостного расстояния d . Затем сопоставляется соответвтие набора рефлексов, близких по значениям d и I эталонным. Достоверность идентификации кристаллической фазы тем выше, чем больше отвечающих ей рефлексов на рентгенограмме. Обычно можно с уверенностью сказать о присутствии той или иной фазы при наличии не менее трех соответствующих ей рефлексов.

Поиск и идентификацию фаз проводят при помощи картотеки ASTM − ICPDS с использованием порошкового дифракционного файла PDF. В настоящее время для рентгенофазового анализа широко используется также компьютерная база данных ICDD.

Рентгеновский количественный фазовый анализ основан на сравнении интенсивности линий определяемых фаз между собой или с интенсивностью линии эталонного образца, полученной на рентгенограмме методом подмешивания эталона или методом назависимого эталона.

При этом в случае количественного анализа необходимы как можно более точные измерения интенсивности линий, особенно для фазы, количество которой невелико.

Рентгеновский структурный анализ

методы исследования структуры вещества по распределению в пространстве и интенсивностям рассеянного на анализируемом объекте рентгеновского излучения. Р. с. а. наряду с нейтронографией (См. Нейтронография) и электронографией (См. Электронография) является дифракционным структурным методом; в его основе лежит взаимодействие рентгеновского излучения с электронами вещества, в результате которого возникает Дифракция рентгеновских лучей . Дифракционная картина зависит от длины волны используемых рентгеновских лучей (См. Рентгеновские лучи) и строения объекта. Для исследования атомной структуры применяют излучение с длиной волны Рентгеновский структурный анализ1 Å, т. е. порядка размеров атомов. Методами Р. с. а. изучают металлы, сплавы, минералы, неорганические и органические соединения, полимеры, аморфные материалы, жидкости и газы, молекулы белков, нуклеиновых кислот и т.д. Наиболее успешно Р. с. а. применяют для установления атомной структуры кристаллических тел. Это обусловлено тем, что Кристаллы обладают строгой периодичностью строения и представляют собой созданную самой природой дифракционную решётку для рентгеновских лучей.

Историческая справка. Дифракция рентгеновских лучей на кристаллах была открыта в 1912 немецкими физиками М. Лауэ , В. Фридрихом и П. Книппингом. Направив узкий пучок рентгеновских лучей на неподвижный кристалл, они зарегистрировали на помещенной за кристаллом фотопластинке дифракционную картину, которая состояла из большого числа закономерно расположенных пятен. Каждое пятно - след дифракционного луча, рассеянного кристаллом. Рентгенограмма , полученная таким методом, носит название лауэграммы (См. Лауэграмма) (рис. 1 ).

Разработанная Лауэ теория дифракции рентгеновских лучей на кристаллах позволила связать длину волны λ излучения, параметры элементарной ячейки кристалла а, b, с (см. Кристаллическая решётка), углы падающего (α 0 , β 0 , γ 0) и дифракционного (α, β, γ) лучей соотношениями:

a (cosα- cosα 0) = h λ,

b (cosβ - cosβ 0) = k λ, (1)

c (cosγ - cosγ 0) =l λ,

В 50-х гг. начали бурно развиваться методы Р. с. а. с использованием ЭВМ в технике эксперимента и при обработке рентгеновской дифракционной информации.

Экспериментальные методы Р. с. а. Для создания условий дифракции и регистрации излучения служат рентгеновские камеры (См. Рентгеновская камера) и рентгеновские дифрактометры (См. Рентгеновский дифрактометр). Рассеянное рентгеновское излучение в них фиксируется на фотоплёнке или измеряется детекторами ядерных излучений (См. Детекторы ядерных излучений). В зависимости от состояния исследуемого образца и его свойств, а также от характера и объёма информации, которую необходимо получить, применяют различные методы Р. с. а. Монокристаллы, отбираемые для исследования атомной структуры, должны иметь размеры Рентгеновский структурный анализ 0,1 мм и по возможности обладать совершенной структурой. Исследованием дефектов в сравнительно крупных почти совершенных кристаллах занимается Рентгеновская топография , которую иногда относят к Р. с. а.

Метод Лауэ - простейший метод получения рентгенограмм от монокристаллов. Кристалл в эксперименте Лауэ неподвижен, а используемое рентгеновское излучение имеет непрерывный спектр. Расположение дифракционных пятен на лауэграммах (рис. 1 ) зависит от симметрии кристалла (См. Симметрия кристаллов) и его ориентации относительно падающего луча. Метод Лауэ позволяет установить принадлежность исследуемого кристалла к одной и 11 лауэвских групп симметрии и ориентировать его (т. е. определять направление кристаллографических осей) с точностью до нескольких угловых минут. По характеру пятен на лауэграммах и особенно появлению Астеризм а можно выявить внутренние напряжения и некоторые др. дефекты кристаллической структуры. Методом Лауэ проверяют качество монокристаллов при выборе образца для его более полного структурного исследования.

Методы качания и вращения образца используют для определения периодов повторяемости (постоянной решётки) вдоль кристаллографического направления в монокристалле. Они позволяют, в частности, установить параметры а , b, с элементарной ячейки кристалла. В этом методе используют монохроматическое рентгеновское излучение, образец приводится в колебательное или вращательное движение вокруг оси, совпадающей с кристаллографическим направлением, вдоль которого и исследуют период повторяемости. Пятна на рентгенограммах качания и вращения, полученных в цилиндрических кассетах, располагаются на семействе параллельных линий. Расстояния между этими линиями, длина волны излучения и диаметр кассеты рентгеновской камеры позволяют вычислить искомый период повторяемости в кристалле. Условия Лауэ для дифракционных лучей в этом методе выполняются за счёт изменения углов, входящих в соотношения (1) при качании или вращении образца.

Рентгенгониометрические методы. Для полного исследования структуры монокристалла методами Р. с. а. необходимо не только установить положение, но и измерить интенсивности как можно большего числа дифракционных отражений, которые могут быть получены от кристалла при данной длине волны излучения и всех возможных ориентациях образца. Для этого дифракционную картину регистрируют на фотоплёнке в рентгеновском гониометре (См. Рентгеновский гониометр) и измеряют с помощью Микрофотометр а степень почернения каждого пятна на рентгенограмме. В рентгеновском дифрактометре (См. Рентгеновский дифрактометр) можно непосредственно измерять интенсивность дифракционных отражений с помощью пропорциональных, сцинтилляционных и других счётчиков рентгеновских квантов. Чтобы иметь полный набор отражений, в рентгеновских гониометрах получают серию рентгенограмм. На каждой из них фиксируются дифракционные отражения, на миллеровские индексы которых накладывают определённые ограничения (например, на разных рентгенограммах регистрируются отражения типа hk 0, hk 1 и т.д.). Наиболее часто производят рентгеногониометрический эксперимент по методам Вайсенберга. Бюргера (рис. 2 ) и де Ионга - Боумена. Такую же информацию можно получить и с помощью рентгенограмм качания.

Для установления атомной структуры средней сложности (Рентгеновский структурный анализ 50-100 атомов в элементарной ячейке) необходимо измерить интенсивности нескольких сотен и даже тысяч дифракционных отражений. Эту весьма трудоёмкую и кропотливую работу выполняют автоматические микроденситометры и дифрактометры, управляемые ЭВМ, иногда в течение нескольких недель и даже месяцев (например, при анализе структур белков, когда число отражений возрастает до сотен тысяч). Применением в дифрактометре нескольких счётчиков, которые могут параллельно регистрировать отражения, время эксперимента удаётся значительно сократить. Дифрактометрические измерения превосходят фоторегистрацию по чувствительности и точности.

Метод исследования поликристаллов (Дебая - Шеррера метод). Металлы, сплавы, кристаллические порошки состоят из множества мелких монокристаллов данного вещества. Для их исследования используют монохроматическое излучение. Рентгенограмма (дебаеграмма) поликристаллов представляет собой несколько концентрических колец, в каждое из которых сливаются отражения от определённой системы плоскостей различно ориентированных монокристаллов. Дебаеграммы различных веществ имеют индивидуальный характер и широко используются для идентификации соединений (в том числе и в смесях). Р.с.а. поликристаллов позволяет определять фазовый состав образцов, устанавливать размеры и преимущественную ориентацию (текстурирование) зёрен в веществе, осуществлять контроль за напряжениями в образце и решать другие технические задачи.

Исследование аморфных материалов и частично упорядоченных объектов. Чёткую рентгенограмму с острыми дифракционными максимумами можно получить только при полной трёхмерной периодичности образца. Чем ниже степень упорядоченности атомного строения материала, тем более размытый, диффузный характер имеет рассеянное им рентгеновское излучение. Диаметр диффузного кольца на рентгенограмме аморфного вещества может служить для грубой оценки средних межатомных расстояний в нём. С ростом степени упорядоченности (см. Дальний порядок и ближний порядок) в строении объектов дифракционная картина усложняется и, следовательно, содержит больше структурной информации.

Метод малоуглового рассеяния позволяет изучать пространственные неоднородности вещества, размеры которых превышают межатомные расстояния, т.е. составляют от 5-10 Å до Рентгеновский структурный анализ 10 000 Å. Рассеянное рентгеновское излучение в этом случае концентрируется вблизи первичного пучка - в области малых углов рассеяния. Малоугловое рассеяние применяют для исследования пористых и мелкодисперсных материалов, сплавов и сложных биологических объектов: вирусов, клеточных мембран, хромосом. Для изолированных молекул белка и нуклеиновых кислот метод позволяет определить их форму, размеры, молекулярную массу; в вирусах - характер взаимной укладки составляющих их компонент: белка, нуклеиновых кислот, липидов; в синтетических полимерах - упаковку полимерных цепей; в порошках и сорбентах - распределение частиц и пор по размерам; в сплавах - возникновение и размеры фаз; в текстурах (в частности, в жидких кристаллах) - форму упаковки частиц (молекул) в различного рода надмолекулярные структуры. Рентгеновский малоугловой метод применяется и в промышленности при контроле процессов изготовления катализаторов, высокодисперсных углей и т.д. В зависимости от строения объекта измерения производят для углов рассеяния от долей минуты до нескольких градусов.

Определение атомной структуры по данным дифракции рентгеновских лучей. Расшифровка атомной структуры кристалла включает: установление размеров и формы его элементарной ячейки; определение принадлежности кристалла к одной из 230 федоровских (открытых Е. С. Федоровым (См. Фёдоров)) групп симметрии кристаллов (См. Симметрия кристаллов); получение координат базисных атомов структуры. Первую и частично вторую задачи можно решить методами Лауэ и качания или вращения кристалла. Окончательно установить группу симметрии и координаты базисных атомов сложных структур возможно только с помощью сложного анализа и трудоёмкой математической обработки значений интенсивностей всех дифракционных отражений от данного кристалла. Конечная цель такой обработки состоит в вычислении по экспериментальным данным значений электронной плотности ρ(х, у, z ) в любой точке ячейки кристалла с координатами x , у, z. Периодичность строения кристалла позволяет записать электронную плотность в нём через Фурье ряд :

где V - объём элементарной ячейки, F hkl - коэффициенты Фурье, которые в Р. с. а. называются структурными амплитудами, i = hkl и связана с тем дифракционным отражением, которое определяется условиями (1). Назначение суммирования (2) - математически собрать дифракционные рентгеновские отражения, чтобы получить изображение атомной структуры. Производить таким образом синтез изображения в Р. с. а. приходится из-за отсутствия в природе линз для рентгеновского излучения (в оптике видимого света для этого служит собирающая линза).

Дифракционное отражение - волновой процесс. Он характеризуется амплитудой, равной ∣F hkl ∣, и фазой α hkl (сдвигом фазы отражённой волны по отношению к падающей), через которую выражается структурная амплитуда: F hkl =∣F hkl ∣(cosα hkl + i sinα hkl ). Дифракционный эксперимент позволяет измерять только интенсивности отражений, пропорциональные ∣F hkl ∣ 2 , но не их фазы. Определение фаз составляет основную проблему расшифровки структуры кристалла. Определение фаз структурных амплитуд в принципиальном отношении одинаково как для кристаллов, состоящих из атомов, так и для кристаллов, состоящих из молекул. Определив координаты атомов в молекулярном кристаллическом веществе, можно выделить составляющие его молекулы и установить их размер и форму.

Легко решается задача, обратная структурной расшифровке: вычисление по известной атомной структуре структурных амплитуд, а по ним - интенсивностей дифракционных отражений. Метод проб и ошибок, исторически первый метод расшифровки структур, состоит в сопоставлении экспериментально полученных ∣F hkl ∣ эксп, с вычисленными на основе пробной модели значениями ∣F hkl ∣ выч. В зависимости от величины фактора расходимости

Принципиально новый путь к расшифровке атомных структур монокристаллов открыло применение т. н. функций Патерсона (функций межатомных векторов). Для построения функции Патерсона некоторой структуры, состоящей из N атомов, перенесём её параллельно самой себе так, чтобы в фиксированное начало координат попал сначала первый атом. Векторы от начала координат до всех атомов структуры (включая вектор нулевой длины до первого атома) укажут положение N максимумов функции межатомных векторов, совокупность которых называется изображением структуры в атоме 1. Добавим к ним ещё N максимумов, положение которых укажет N векторов от второго атома, помещенного при параллельном переносе структуры в то же начало координат. Проделав эту процедуру со всеми N атомами (рис. 3 ), мы получим N 2 векторов. Функция, описывающая их положение, и есть функция Патерсона.

Для функции Патерсона Р (u, υ, ω ) (u, υ, ω - координаты точек в пространстве межатомных векторов) можно получить выражение:

из которого следует, что она определяется модулями структурных амплитуд, не зависит от их фаз и, следовательно, может быть вычислена непосредственно по данным дифракционного эксперимента. Трудность интерпретации функции Р (u, υ, ω ) состоит в необходимости нахождения координат N атомов из N 2 её максимумов, многие из которых сливаются из-за перекрытий, возникающих при построении функции межатомных векторов. Наиболее прост для расшифровки Р (u, υ, ω ) случай, когда в структуре содержится один тяжёлый атом и несколько лёгких. Изображение такой структуры в тяжёлом атоме будет значительно отличаться от др. её изображений. Среди различных методик, позволяющих определить модель исследуемой структуры по функции Патерсона, наиболее эффективными оказались так называемые суперпозиционные методы, которые позволили формализовать её анализ и выполнять его на ЭВМ.

Методы функции Патерсона сталкиваются с серьёзными трудностями при исследовании структур кристаллов, состоящих из одинаковых пли близких по атомному номеру атомов. В этом случае более эффективными оказались Так называемые прямые методы определения фаз структурных амплитуд. Учитывая тот факт, что значение электронной плотности в кристалле всегда положительно (или равно нулю), можно получить большое число неравенств, которым подчиняются коэффициенты Фурье (структурные амплитуды) функции ρ(x , у, z ). Методами неравенств можно сравнительно просто анализировать структуры, содержащие до 20-40 атомов в элементарной ячейке кристалла. Для более сложных структур применяются методы, основанные на вероятностном подходе к проблеме: структурные амплитуды и их фазы рассматриваются как случайные величины; из физических представлений выводятся функции распределения этих случайных величин, которые дают возможность оценить с учётом экспериментальных значений модулей структурных амплитуд наиболее вероятные значения фаз. Эти методы также реализованы на ЭВМ и позволяют расшифровать структуры, содержащие 100-200 и более атомов в элементарной ячейке кристалла.

Итак, если фазы структурных амплитуд установлены, то по (2) может быть вычислено распределение электронной плотности в кристалле, максимумы этого распределения соответствуют положению атомов в структуре (рис. 4 ). Заключительное уточнение координат атомов проводится на ЭВМ Наименьших квадратов метод ом и в зависимости от качества эксперимента и сложности структуры позволяет получить их с точностью до тысячных долей Å (с помощью современного дифракционного эксперимента можно вычислять также количественные характеристики тепловых колебаний атомов в кристалле с учётом анизотропии этих колебаний). Р. с. а. даёт возможность установить и более тонкие характеристики атомных структур, например распределение валентных электронов в кристалле. Однако эта сложная задача решена пока только для простейших структур. Весьма перспективно для этой цели сочетание нейтронографических и рентгенографических исследований: нейтронографические данные о координатах ядер атомов сопоставляют с распределением в пространстве электронного облака, полученным с помощью Р. с. а. Для решения многих физических и химических задач совместно используют рентгеноструктурные исследования и резонансные методы.

Вершина достижений Р. с. а. - расшифровка трёхмерной структуры белков, нуклеиновых кислот и других макромолекул. Белки в естественных условиях, как правило, кристаллов не образуют. Чтобы добиться регулярного расположения белковых молекул, белки кристаллизуют и затем исследуют их структуру. Фазы структурных амплитуд белковых кристаллов можно определить только в результате совместных усилий рентгенографов и биохимиков. Для решения этой проблемы необходимо получить и исследовать кристаллы самого белка, а также его производных с включением тяжёлых атомов, причём координаты атомов во всех этих структурах должны совпадать.

О многочисленных применениях методов Р. с. а. для исследования различных нарушений структуры твёрдых тел под влиянием всевозможных воздействий см. в ст. Рентгенография материалов .

Лит.: Белов Н. В., Структурная кристаллография, М., 1951; Жданов Г. С., Основы рентгеноструктурного анализа, М. - Л., 1940; Джеймс Р., Оптические принципы дифракции рентгеновских лучей, пер. с англ., М., 1950; Бокий Г. Б., Порай-Кошиц М. А., Рентгеноструктурный анализ, М., 1964; Порай-Кошиц М. А., Практический курс рентгеноструктурного анализа, М., 1960: Китайгородский А. И., Теория структурного анализа, М., 1957; Липеон Г., Кокрен В., Определение структуры кристаллов, пер. с англ., М., 1961; Вайнштейн Б. К., Структурная электронография, М., 1956; Бэкон Дж., Дифракция нейтронов, пер. с англ., М., 1957; Бюргер М., Структура кристаллов и векторное пространство, пер. с англ., М., 1961; Гинье А., Рентгенография кристаллов, пер. с франц., М., 1961; Woolfson М. М., An introduction to X-ray crystallography, Camb., 1970: Ramachandran G. N., Srinivasan R., Fourier methode in crystallography, N. Y., 1970; Crystallographic computing, ed. F. R. Ahmed, Cph., 1970; Stout G. H., Jensen L. H., X-ray structure determination, N. Y. - L., .

В. И. Симонов.

Рис. 9. а. Проекция на плоскость ab функции межатомных векторов минерала баотита O 16 Cl]. Линии проведены через одинаковые интервалы значений функции межатомных векторов (линии равного уровня). б. Проекция электронной плотности баотита на плоскость ab, полученная расшифровкой функции межатомных векторов (a). Максимумы электронной плотности (сгущения линий равного уровня) отвечают положениям атомов в структуре. в. Изображение модели атомной структуры баотита. Каждый атом Si расположен внутри тетраэдра, образованного четырьмя атомами O; атомы Ti и Nb - в октаэдрах, составленных атомами O. Тетраэдры SiO 4 и октаэдры Ti(Nb)O 6 в структуре баотита соединены, как показано на рисунке. Часть элементарной ячейки кристалла, соответствующая рис. а и б, выделена штриховой линией. Точечные линии на рис. а и б определяют нулевые уровни значений соответствующих функций.

Физическая энциклопедия - РЕНТГЕНОВСКИЙ СТРУКТУРНЫЙ АНАЛИЗ, исследование атомной структуры образца вещества по картине дифракции на нем рентгеновского излучения. Позволяет установить распределение электронной плотности вещества, по которому определяют род атомов и их… … Иллюстрированный энциклопедический словарь

- (рентгеноструктурный анализ), совокупность методов исследования атомной структуры вещества с помощью дифракции рентгеновских лучей. По дифракционной картине устанавливают распределение электронной плотности вещества, а по ней род атомов и их… … Энциклопедический словарь

- (рентгено структурный анализ), метод исследования атомно мол. строения в в, гл. обр. кристаллов, основанный на изучении дифракции, возникающей при взаимод. с исследуемым образцом рентгеновского излучения длины волны ок. 0,1 нм. Используют гл. обр … Химическая энциклопедия - (см. РЕНТГЕНОВСКИЙ СТРУКТУРНЫЙ АНАЛИЗ, НЕЙТРОНОГРАФИЯ, ЭЛЕКТРОНОГРАФИЯ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

Определение строения в в и материалов, т. е. выяснение расположения в пространстве составляющих их структурных единиц (молекул, ионов, атомов). В узком смысле С. а. определение геометрии молекул и мол. систем, к рую обычно описывают набором длин… … Химическая энциклопедия

РЕНТГЕНОВСКИЙ СТРУКТУРНЫЙ АНАЛИЗ (рентгеноструктурный анализ) - методы исследования атомного строения вещества по распределению в пространстве и интенсивностям рассеянного на анализируемом объекте рентг. . Р. с. а. кристаллич. материалов позволяет устанавливать координаты атомов с точностью до 0,1-0,01 нм, определять характеристики тепловых этих атомов, включая анизотропию и отклонения от гармонич. закона, получать по эксперим. . данным распределения в пространстве плотности валентных электронов на хим. связях в кристаллах и молекулах. Этими методами исследуются металлы и сплавы, минералы, неорганич. и органич. соединения, белки, нуклеиновые кислоты, вирусы. Спец. методы Р. с. а. позволяют изучать полимеры, аморфные материалы, жидкости, газы.

Среди дифракц. методов исследования атомного строения вещества Р. с. а. является наиб. распространённым и развитым. Его возможности дополняют методы нейтронографии и электронографии .Дифракц. картина зависит от атомного строения изучаемого объекта, характера и длины волны рентг. излучения. Для установления атомного строения вещества наиб. эффективно использование рентг. излучения с длиной волны ~ 10 нм и меньше, т. е. порядка размеров атомов. Особенно успешно и с высокой точностью методами Р. с. а. исследуют атомное строение кристаллич. объектов, структура к-рых обладает строгой периодичностью, и они, т. о., представляют собой естеств. трёхмерную дифракц. решётку для рентг. излучения.

Историческая справка

В основе Р. с. а. кристаллич. вещества лежит учение о . В 1890 рус. кристаллограф Е. С. Фёдоров и нем. математик А. Шёнфлис (A. Schonflis) завершили вывод 230 пространственных групп , характеризующих все возможные способы размещения атомов в кристаллах. Дифракция рентг. лучей на кристаллах, составляющая эксперим. фундамент Р. с. а., была открыта в 1912 М. Лауэ (М. Laue) п его сотрудниками В. Фридрихом (W. Friedrich) и П. Книппингом (P. Knipping). Разработанная Лауэ теория дифракции рентг. лучей на кристаллах позволила связать длину волны излучения, линейные размеры элементарной ячейки кристалла а, b, с , углы падающего и дифракционноголучей соотношениями

где h , k, l - целые числа (индексы кристаллографические ).Соотношения (1) получили название ур-ний Лауэ, выполнение их необходимо для возникновения дифракции рентг. лучей на кристалле. Смысл ур-ний (1) в том, что между параллельными лучами, рассеянными атомами, отвечающими соседним узлам решётки, должны быть целыми кратными.

В 1913 У. Л. Брэгг (W. L. Bragg) и Г. В. Вульф показали, что дифракц. рентг. пучок можно рассматривать как отражение падающего луча от нек-рой системы кристаллографич. плоскостей с межплоскостным расстоянием d: где - угол между отражающей плоскостью и дифракц. лучом (угол Брэгга). В 1913-14 У. Г. и У. Л. Брэгги впервые использовали дифракцию рентг. лучей для эксперим. проверки предсказанного ранее У. Барлоу (W. Barlow) атомного строения кристаллов NaCl, Си, алмаза и др. В 1916 П. Дебай (P. Debye) и П. Шеррер (P. Scherrer) предложили и разработали дифракц. методы рентгеноструктурных исследований поликристаллич. материалов (Дебая - Шеррера метод ).

В качестве источника рентг. излучения использовались (и используются поныне) отпаянные рентг. трубки с анодами из разл. металлов и, следовательно, с различными соответствующего характеристич. излучения - Fe ( = 19,4 нм), Си ( = 15,4 нм), Мо ( = 7,1 нм), Ag ( = 5,6 нм). Позднее появились на порядок более мощные трубки с вращающимся анодом, для структурных исследований используют также наиб. мощный, имеющий белый (непрерывный) спектр излучения источник - рентг. синхротронное излучение . С помощью системы монохроматоров можно непрерывным образом изменять применяемого в исследовании синхретронного рентг. излучения, что имеет принципиальное значение при использовании в Р. с. а. эффектов аномального рассеяния. В качестве детектора излучения в Р. с. а. служит рентг. фотоплёнка, к-рую вытесняют сцинтилляционные и полупроводниковые детекторы. Эффективность измерит. систем резко возросла с применением координатных одномерных и двумерных детекторов.

Количество п качество информации, получаемой с помощью Р. с. а., зависят от точности измерений и обработки эксперим. данных. Алгоритмы обработки дифракц. данных определяются используемым приближением теории взаимодействия рентг. излучения с веществом. В 1950-х гг. началось применение ЭВМ в технике рентгеноструктурного эксперимента и для обработки эксперим. данных. Созданы полностью автоматизированные системы для исследования кристаллич. материалов, к-рые проводят эксперимент, обработку эксперим. данных, осн. процедуры по построению и уточнению атомной модели структуры и, наконец, графич. представление результатов исследования. Однако с помощью этих систем пока нельзя изучать в автоматич. режиме кристаллы с псевдосимметрией, двойниковые образцы и кристаллы с др. особенностями структуры.

Экспериментальные методы рентгеновского структурного анализа

Для реализации условий дифракции (1) и регистрации положения в пространстве и интенсивностей дифрагированного рентг. излучения служат рентг. камеры и рентг. дифрактометры с регистрацией излучения соответственно фотогр. методами или детекторами излучения. Характер образца (монокристалл или поликристалл, образец с частично упорядоченной структурой или аморфное тело, жидкость пли газ), его размер и решаемая задача определяют необходимую экспозицию и точность регистрации рассеянного рентг. излучения и, следовательно, определённый метод Р. с. а. Для изучения монокристаллов при использовании в качестве источника рентг. излучения отпаянной рентг. трубки достаточен объём образца ~10 -3 мм 3 . Для получения качественной дифракц. картины образец должен обладать возможно более совершенной структурой, причём его блочность не препятствует структурным исследованиям. Реальное строение крупных, почти совершенных монокристаллов исследует рентгеновская топография , к-рую иногда тоже относят к Р. с. а.

Метод Лауэ - простейший метод получения рентгенограмм монокристаллов. Кристалл в эксперименте Лауэ неподвижен, а используемое рентг. излучение имеет непрерывный спектр. Расположение дифракц. пятен на лауэграммах зависит от размеров элементарной ячейки и симметрии кристалла , а также и от ориентации образца относительно падающего рентг. луча. Метод Лауэ позволяет отнести монокристалл к одной из 11 лауэвских групп симметрии и установить ориентацию его кристаллографич. осей с точностью до угл. минут (см. Лауэ метод) . По характеру дифракц. пятен на лауэграммах и особенно по появлению астеризма (размытия пятен) можно выявить внутр. напряжения и нек-рые др. особенности строения образца. Методом Лауэ проверяют качество монокристаллов и проводят отбор наиб. совершенных образцов для более полного структурного исследования (рентгенгониометрич. методами; см. ниже).

Методами качания и вращения образца определяют периоды повторяемости (трансляции) вдоль заданных кристаллографич. направлений, проверяют симметрию кристалла, а также измеряют интенсивности дифракц. отражений. Образец во время эксперимента приводится в колебат. или вращат. движение относительно оси, совпадающей с одной из кристаллографич. осей образца, к-рую предварительно ориентируют перпендикулярно падающему рентг. лучу. Дифракц. картина, создаваемая монохроматич. излучением, регистрируется на рентг. плёнке, находящейся в цилиндрич. кассете, ось к-рой совпадает с осью колебания образца. Дифракц. пятна при такой геометрии съёмки на развёрнутой плёнке оказываются расположенными на семействе параллельных прямых (рис. 1). Период повторяемости Т вдоль кристаллографич. направления равен:

где D - диаметр кассеты, - расстояние между соответствующими прямыми на рентгенограмме. Т. к. постоянна, условия Лауэ (1) выполняются за счёт изменения углов при качании или вращении образца. Обычно на рентгенограммах качания и вращения образца дифракц. пятна перекрываются. Чтобы избежать этого нежелательного эффекта, можно уменьшить угл. амплитуду колебаний образца. Такой приём применяют, напр., в Р. с. а. белков, где рентгенограммы качания используют для измерения интенсивностей дифракц. отражений.

Рис. 1. Рентгенограмма качания минерала сейдозерита Na 4 MnTi(Zr,Ti) 2 0 2 (F,OH) 2 2 .

Рентгенгониометрические методы. Для полного структурного исследования монокристалла методами Р. с. а. необходимо определить положение в пространстве и измерить интегральные интенсивности всех дифракц. отражений, возникающих при использовании излучения с данной. Для этого в процессе эксперимента образец должен с точностью порядка угл. минут принимать ориентации, при к-рых выполняются условия (1) последовательно для всех семейств кристаллографич. плоскостей образца; при этом регистрируются мн. сотни и даже тысячи дифракц. рефлексов. При регистрации дифракц. картины на рентг. фотоплёнке интенсивности рефлексов определяются микроденситометром по степени почернения и размеру дифракц. пятен. В разл. типах гониометров реализуются разл. геом. схемы регистрации дифракц. картины. Полный набор интенсивностей дифракц. отражений получают на серии рентгенограмм, на каждой рентгенограмме регистрируются рефлексы, на кристаллографич. индексы к-рых наложены определ. ограничения. Напр., на разных рентгенограммах регистрируются отражения типа hk0 , hk1 (рис. 2) . Для установления атомной структуры кристалла, в элементарной ячейке к-рого содержится ~100 атомов, необходимо измерить неск. тысяч дифракц. отражений. В случае монокристаллов белков объём эксперимента возрастает до 10 4 -10 6 рефлексов.

Рис. 2. Рентгенограмма минерала сейдозерита, полученная в рентгеновском гониометре Вайсенберга. Зарегистрированные дифракционные отражения имеют индексы. Отражения, расположенные на одной кривой, характеризуются постоянным индексом k .

При замене фотоплёнки на счётчики рентг. квантов возрастают чувствительность и точность измерения интенсивностей дифракц. отражений. В совр. автоматич. дифрактометрах предусмотрены 4 оси вращения (3 у образца и 1 у детектора), что позволяет реализовать в них различные по геометрии методы регистрации дифракц. отражений. Такой прибор универсален, управление им осуществляется с помощью ЭВМ и специально разработанных алгоритмов и программ. Наличие ЭВМ позволяет ввести обратную связь, оптимизацию измерений каждого дифракц. отражения и, следовательно, естеств. образом планировать весь дифракц. эксперимент. Измерения интенсивностей производятся с необходимой для решаемой структурной задачи статистич. точностью. Однако увеличение точности измерения интенсивностей на порядок требует увеличения времени измерений на два порядка. На точность измерений накладывает ограничение качество исследуемого образца. Для белковых кристаллов (см. ниже) сокращение времени эксперимента осуществляется за счёт использования двумерных детекторов, в к-рых параллельно идёт измерение мн. десятков дифракц. отражений. При этом утрачивается возможность оптимизации измерений на уровне отд. рефлекса.

Метод исследования поликристаллов (метод Дебая - Шеррера). Для Р. с. а. кристаллич. порошков, керамич. материалов и др. поликристаллич. объектов, состоящих из большого числа мелких, случайным образом ориентированных друг относительно друга монокристаллов, используется монохроматич. рентг. излучение. Рентгенограмма от поликристаллич. образца (де-баеграмма) представляет собой совокупность концент-рич. колец, каждое из к-рых состоит из дифракц. отражений от разл. образом ориентированных в разных зёрнах систем кристаллографич. плоскостей с определённым межплоскостным расстоянием d . Набор d и соответствующие им интенсивности дифракц. отражений индивидуальны для каждого кристаллич. вещества. Метод Дебая - Шеррера используется при идентификации соединений и анализе смесей поликристаллич. веществ по качеств. и количеств. составу составляющих смеси фаз. Анализ распределения интенсивностей в дебаевских кольцах позволяет оценить размеры зёрен, наличие напряжений и преимущественных ориентации (текстурирования) в расположении зёрен (см. Рентгенография материалов, Дебая - Шеррера метод) .

В 1980 - 90-х гг. в Р. с. а. стал применяться метод уточнения атомного строения кристаллич. веществ по дифракц. данным от поликристаллич. материалов, предложенный X. М. Ритвелдом (Н. М. Rietveld) для нейтронографич. исследований. Метод Рптвелда (метод полнопрофильного анализа) используется в том случае, когда известна приближённая структурная модель изучаемого соединения, по точности результатов он может конкурировать с рентгеноструктурными методами исследования монокристаллов.

Исследование аморфных материалов и частично упорядоченных объектов . Чем ниже степень упорядоченности атомного строения анализируемого вещества, тем более размытый, диффузный характер имеет рассеянное им рентг. излучение. Однако дифракц. исследования даже аморфных объектов дают возможность получить информацию об их строении. Так, диаметр диффузного кольца на рентгенограмме от аморфного вещества (рис. 3) позволяет оценить ср. межатомные расстояния в нём. С ростом степени упорядоченности в строении объектов дифракц. картина усложняется (рис. 4) и, следовательно, содержит больше структурной информации.

Рис. 3. Рентгенограмма аморфного вещества - ацетата целлюлозы .

Рис. 4. Рентгенограммы биологических объектов: а - волоса; б - натриевой соли ДНК во влажном состоянии; в - текстуры натриевой соли ДНК .

Метод малоуглового рассеяния . В том случае, когда размеры неоднородностей в объекте исследования превышают межатомные расстояния и составляют от 0,5-1 до 10 3 нм, т. е. во много раз превышают длину волны используемого излучения, рассеянное рентг. излучение концентрируется вблизи первичного пучка - в области малых углов рассеяния. Распределение интенсивности в этой области отражает особенности строения исследуемого объекта. В зависимости от строения объекта и размеров неоднородностей интенсивность рентг. рассеяния измеряют в углах от долей минуты до неск. градусов.

Малоугл. рассеяние применяют для изучения пористых и мелкодисперсных материалов, сплавов и биол. объектов. Для молекул белка и нуклеиновых кислот в растворах метод позволяет с невысоким разрешением определять форму и размеры индивидуальной молекулы, мол. массу, в вирусах - характер взаимной укладки составляющих их компонент (белка, нуклеиновых кислот, липидов), в синтетич. полимерах - упаковку полимерных цепей, в порошках и сорбентах - распределение частиц и пор по размерам, в сплавах - фиксировать возникновение новых фаз и определять размеры этих включений, в текстурах (в частности, в жидких кристаллах) - упаковку частиц (молекул) в различного рода надмолекулярные структуры. Эффективным оказался метод малоугл. рассеяния и для исследования строения ленгмюровских плёнок. Он применяется также в пром-сти при контроле процессов изготовления катализаторов, высокодисперсных углей и т. д.

Анализ атомной структуры кристаллов

Определение атомной структуры кристаллов включает: установление формы и размеров элементарной ячейки, симметрии кристалла (его принадлежности к одной из 230 фёдоровских групп) и координат базисных атомов структуры. Прецизионные структурные исследования позволяют, кроме того, получать количеств. характеристики тепловых движений атомов в кристалле и пространственное распределение в нём валентных электронов. Методами Лауэ и качания образца определяют метрику кристаллич. решётки. Для дальнейшего анализа необходимо измерение интенсивностей всех возможных дифракц. отражений от исследуемого образца при данной l. Первичная обработка эксперим. данных учитывает геометрию дифракц. эксперимента, поглощение излучения в образце, и др. более тонкие эффекты взаимодействия излучения с образцом.

Трёхмерная периодичность кристалла позволяет разложить распределение его электронной в пространстве в ряд Фурье:

где V - объём элементарной ячейки кристалла, F hkl - коэффициенты Фурье, к-рые в Р. с. а. наз. структурными амплитудами. Каждая структурная амплитуда характеризуется целыми числами h, k, l - кристаллографич. индексами в соответствии с (1) и однозначно отвечает одному дифракц. отражению. Разложение (2) физически реализуется в дифракц. эксперименте.

Осн. сложность структурного исследования состоит в том, что обычный дифракц. эксперимент даёт возможность измерить интенсивности дифракц. пучков I hkl но не позволяет фиксировать их фазы. Для мозаичного кристалла в кинематич. приближении . Анализ эксперим. массива с учётом закономерных погасаний рефлексов позволяет однозначно установить его принадлежность к одной из 122 рентг. групп симметрии. При отсутствии аномального рассеяния дифракц. картина всегда центросимметрична. Для определения фёдоровской группы симметрии необходимо независимо выяснить, обладает ли кристалл центром симметрии. Эта задача может быть решена на основе анализа аномальной составляющей рассеяния рентг. лучей. При отсутствии последнего строят кривые статистич. распределения по их значениям, эти распределения различны для центросимметричных и ацентричных кристаллов. Отсутствие центра симметрии может быть однозначно установлено и по физ. свойствам кристалла (пироэлектрическим, сегнетоэлектрическим и др.).

Фурье-преобразование соотношения (2) позволяет получить расчётные ф-лы для вычисления величин F hkl (в общем случае - комплексных):

где - ат. фактор рассеяния рентг. излучения атомом j j , x j , y j , z j - его координаты; суммирование идёт по всем N атомам элементарной ячейки.

Задача, обратная структурному исследованию, решается следующим образом: если известна атомная модель структуры, то по (3) вычисляются модули и фазы структурных амплитуд и, следовательно, интенсивности дифракц. отражений. Дифракц. эксперимент даёт возможность измерить мн. сотни не связанных симметрией амплитуд , каждая из к-рых определяется по (3) набором координат базисных (независимых по симметрии) атомов структуры. Таких структурных параметров существенно меньше, чем модулей, следовательно, между последними должны существовать связи. Теория структурного анализа установила связи разного типа: неравенства, линейные неравенства, структурные произведения и детерминанты связи структурных амплитуд.

На основе наиб, эффективных статистич. связей развиты [Дж. Карле (J. Karle) и X. А. Хауптман (Н. A. Hauptman), Нобелевская премия, 1985] т. н. прямые методы определения фаз структурных амплитуд. Если взять тройку больших по модулям структурных амплитуд, индексы к-рых связаны простыми соотношениями h 1 + h 2 + h 3 = 0, k 1 + k 2 + k 3 = 0, l 1 + l 2 + l 3 = 0 , то наиб. вероятная сумма фаз этих амплитуд будет равна нулю:

Вероятность выполнения равенства тем выше, чем больше произведение спец. образом нормированных структурных амплитуд, входящих в это соотношение. С ростом числа атомов N в элементарной ячейке кристалла надёжность соотношения падает. На практике используются существенно более сложные статистич. соотношения и достаточно строгие оценки вероятностей выполнения этих соотношений. Вычисления по этим соотношениям весьма громоздки, алгоритмы сложны и реализуются только на мощных совр. ЭВМ. Прямые методы дают первые приближённые значения фаз и только наиб. сильных по нормированным модулям структурных амплитуд.

Для практики структурных исследований важны процедуры автоматич. уточнения фаз структурных амплитуд. На основе приближённого набора фаз сильнейших структурных амплитуд и по соответствующим эксперим. модулям по (2) вычисляется первое приближённое распределение электронной плотности в кристалле. Затем модифицируется на основе физ. и кристаллохим. информации о свойствах этого распределения. Напр., во всех точках пространства, по модифициров. распределению путём обращения Фурье вычисляются уточнённые фазы и вместе с эксперим. значениями используются для построения следующего приближения и т. д. После получения достаточно точных значенийпо (2) строится трёхмерное распределение электронной плотности в кристалле. Оно по существу является изображением исследуемой структуры, и вся сложность его получения вызвана отсутствием собирающих линз для рентг. излучения.

Правильность полученной атомной модели проверяют сравнением эксперим. и вычисленных по (3) модулей структурных амплитуд. Количеств. характеристика такого сравнения - фактор расходимости

Этот фактор даёт возможность методом проб и ошибок получить оптим. результаты. Для некристаллич. объектов это практически единств. метод интерпретации дифракц. картины.

Определение фаз структурных амплитуд прямыми методами осложняется при увеличении числа атомов в элементарной ячейке кристалла. Псевдосимметрия и нек-рые др. особенности его строения также ограничивают возможности прямых методов.

Иной подход к определению атомного строения кристаллов по рентг. дифракц. данным был предложен А. Л. Патерсоном (A. L. Paterson). Атомная модель структуры строится на основе анализа ф-ции межатомных векторов P(u,v,w )(ф-ции Патерсона), к-рая вычисляется по эксперим. значениям . Смысл этой ф-ции можно пояснить с помощью схемы её геом. построения. Атомную структуру, содержащую в элементарной ячейке N атомов, помещаем параллельно самой себе так, чтобы первый атом попал в начало координат. Если умножить атомные веса всех атомов структуры на значение атомного веса первого атома, то получим веса первых N пиков ф-ции межатомных векторов. Это т. н. изображение структуры в первом атоме. Затем в начало координат помещаем таким же образом построенное изображение структуры во втором атоме, затем в третьем и т. д. Проделав эту процедуру со всеми N атомами структуры, получим N 2 пиков ф-ции Патерсона (рис. 5). Т. к. атомы не являются точками, полученная ф-ция P(u,v,w )содержит достаточно размытые и перекрывающиеся пики:

Рис. 5. Схема построения функции межатомных векторов для структуры, состоящей из трёх атомов .

[ - элемент объёма в окрестности точки (х,у,z )]. Ф-ция межатомных векторов строится по квадратам модулей эксперим. структурных амплитуд и является свёрткой распределения электронной плотности с собой, но после инверсии в начале координат.

Рис. 6. Минерал баотит Ba 4 Ti 4 (Ti,Nb) 4 O 16 Cl; a - функция межатомных векторов, проекция на плоскость аb, линии равного уровня значений функции проведены через равные произвольные интервалы; б - проекция распределения электронной плотности на плоскость аb, полученная путём интерпретации функции межатомных векторов и уточнения атомной модели, сгущения линий равного уровня отвечают положениям атомов в структуре; в - проекция атомной модели структуры на плоскость аb в полинговских полиэдрах. Атомы Si расположены внутри тетраэдров из атомов кислорода, атомы Ti и Nb находятся в октаэдрах из атомов кислорода. Тетраэдры и октаэдры в структуре баотита соединены, как показано на рисунке. Атомы Ва и С1 показаны черными и светлыми кружками. Часть элементарной ячейки кристалла, изображённая на рисунках а и б, отвечает на рисунке в квадрату, выделенному штриховыми линиями .

Трудности интерпретации P(u,v,w )связаны с тем, что среди N 2 пиков этой ф-ции необходимо распознать пики одного изображения структуры. Максимумы ф-ции Патерсона существенно перекрываются, что ещё более осложняет её анализ. Наиб. прост для анализа случай, когда исследуемая структура состоит из одного тяжёлого атома и неск. значительно более лёгких атомов. В этом случае изображение структуры в тяжёлом атоме рельефно выступает на фоне остальных пиков P(u,v,w) . Разработан ряд методов систематич. анализа ф-ции межатомных векторов. Наиб. эффективными из них являются суперпозиц. методы, когда две или более копий P(u,v,w) в параллельном положении накладываются друг на друга с соответствующими смещениями. При этом закономерно совпадающие на всех копиях пики выделяют одно или несколько из N исходных изображении структуры. Как правило, для единств. изображения структуры приходится использовать дополнит. копии P(u,v,w) . Проблема сводится к поиску необходимых взаимных смещений этих копий. После локализации на суперпозиц. синтезе приближённого распределения атомов в структуре этот синтез может быть подвергнут обращению Фурье и т. о. он позволяет получить фазы структурных амплитуд. Последние вместе с эксперим. значениями используются для построения. Все процедуры суперпозиц. методов алгоритмизированы и реализованы в автоматич. режиме на ЭВМ. На рис. 6 изображено атомное строение кристалла, установленное суперпозиционными методами по ф-ции Патерсона.

Разрабатываются эксперим. методы определения фаз структурных амплитуд. Физ. основой этих методов служит эффект Реннингера - многолучевая рентг. дифракция. При наличии одноврем. рентг. дифракц. отражений имеет место перекачка энергии между ними, к-рая зависит от фазовых соотношений между данными дифракц. пучками. Вся картина изменения интенсивностей при этом ограничена угл. секундами и для массовых структурных исследований эта методика практич. значения пока не приобрела.

В самостоят. раздел Р. с. а. выделяют прецизионные структурные исследования кристаллов, позволяющие получать по дифракц. данным не только модели атомного строения исследуемых соединений, но и количеств. характеристики тепловых колебаний атомов, включая анизотропию этих колебаний (рис. 7) и их отклонения от гармонич. закона, а также пространственное распределение валентных электронов в кристаллах. Последнее важно для исследования связи между атомным строением и физ. свойствами кристаллов. Для прецизионных исследований разрабатываются спец. методы эксперим. измерений и обработки дифракц. данных. В этом случае необходимы учёт одноврем. отражений, отклонений от кинематичности дифракции, принятие во внимание динамич. поправок теории дифракции и др. тонких эффектов взаимодействия излучения с веществом. При уточнении структурных параметров используют метод наим. квадратов, причём важнейшее значение имеет учёт корреляции между уточняемыми параметрами.

Рис. 7. Эллипсоиды анизотропных тепловых колебаний атомов стабильного нитрон-сильного радикала C 13 H 17 N 2 O 2 .

Р. с. а. используют для установления связи атомного строения с физ. свойствами , суперионных проводников, лазерных и нелинейных оптич. материалов, высокотемпературных сверхпроводников и др. Методами Р. с. а. получены уникальные результаты при исследовании механизмов фазовых переходов в твёрдом теле и биол. активности макромолекул. Так, анизотропия поглощения акустич. волн в монокристаллах парателлурита связана с энгармонизмом тепловых колебаний атомов Те (рис. 8) . Упругие свойства тетрабората лития Li 2 B 4 О 7 , открывающие для него перспективы применения в качестве детектора акустич. волн, обусловлены характером хим. связей в этом соединении. С помощью Р. с. а. исследуют распределение в кристалле валентных электронов, реализующих межатомные связи в нём. Эти связи могут исследоваться с помощью распределения деформац. электронной плотности, представляющей собой разность

где - распределение электронной плотности в кристалле, - сумма сферически симметричных плотностей свободных (не вступивших в хим. связи) атомов данной структуры, к-рые расположены соответственно в точках с координатами x i , y i , z i . При установлении по рентг. дифракц. данным деформац. электронной плотности наиб. сложен учёт тепловых колебаний атомов, существ. образом коррелирующих с характером и направлениями хим. связей. Т. о., деформац. плотность отражает перераспределение в пространстве той части электронной плотности атомов, к-рая непосредственно участвует в образовании хим. связей (рис. 9).

Рис. 8. Ближайшее окружение теллура атомами О в структуре (a) и ангармоническая составляющая распределения плотности вероятности нахождения атома Те в данной точке пространства в процессе тепловых колебаний (б). Положительные (сплошные) и отрицательные (штриховые) линии равного уровня проведены через 0,02 -3 .

Рис. 9. Сечение синтеза деформационной электронной плотности кристалла Li 2 B 4 O 7 плоскостью, проходящей через атомы О треугольной группы ВО 3 , в центре которой находится атом В. Максимумы на отрезках В - О указывают на ковалентный характер связей между этими атомами. Штриховыми линиями выделены области, из которых электронная плотность переместилась на химические связи. Линии равного уровня проведены через 0,2 .

Рис. 10. Упорядоченное размещение атомов Sr по позициям лантана в структуре Атомы Сu

Структурные исследования высокотемпературных сверхпроводников позволили установить их атомное строение и его связь с их физ. свойствами. Было показано, что в монокристаллах темп-ра перехода в сверхпроводящее состояние Т с зависит не только от кол-ва Sr, но и от способа его статистич. размещения. Равномерное распределение атомов Sr в структуре является оптимальным для сверхпроводящих свойств. Концентрация Sr в определ. слоях структуры (рис. 10) ведёт к потере в этих слоях части кислорода и к понижению Т с . Для кристаллов методами Р. с. а. установлено упорядочение в размещении атомов О. В пределах одного кристалла установлено наличие ромбических по симметрии областей локального состава с Т с ~90 К и областей находятся в [СuО 6 ]-октаэдрах. Дефектность по кислороду показана отсутствием у одного из Cu-полиэдров одной кислородной вершины. Позиции, полностью заселённые атомами La, показаны чёрными кружками. Светлые кружки - позиции лантана, в которых сконцентрированы и статистически размещены все атомы Sr.

с Т с ~ 60 К. В кристаллах с кол-вом кислорода меньше чем 6,5 атома на элементарную ячейку, наряду с областями ромбич. симметрии локального состава появляются области тетрагональной симметрии локального состава, к-рые не переходят в сверхпроводящее состояние.

Рис. 11. Атомная модель молекулы гуанил-специфичной рибонуклеазы С 2 , построенная на основе рентгеноструктурного исследования монокристаллов этого белка с разрешением 1,55

Для решения мн. задач физики твёрдого тела, химии, молекулярной биологии и др. весьма эффективно совместное использование методов рентгеноструктурного анализа и резонансных методов (ЭПР, ЯМР и др.). При исследовании атомного строения белков, нуклеиновых к-т, вирусов и др. объектов молекулярной биологии возникают специфич. сложности. Макромолекулы или. более крупные биол. объекты необходимо прежде всего получить в монокристаллич. форме, после чего для их исследования можно применять все методы Р. с. а., развитые для изучения кристаллич. веществ. Проблема фаз структурных амплитуд для белковых кристаллов решается методом изоморфных замещений. Наряду с монокристаллами исследуемого нативного белка получают монокристаллы его производных с тяжелоатомными добавками, изоморфными кристаллам исследуемого белка. Разностные ф-ции Патерсона для производных и нативного белка дают возможность локализовать в элементарной ячейке кристалла положения тяжёлых атомов. Координаты этих атомов и наборы модулей структурных амплитуд белка и его тяжелоатомных производных используются в спец. алгоритмах для оценки фаз структурных амплитуд. В белковой кристаллографии применяются поэтапные методы установления атомного строения макромолекул с последоват. переходом от низкого к более высокому разрешению (рис. 11). Разработаны и спец. методы уточнения атомного строения макромолекул по рентг. дифракц. данным. Объёмы вычислений при этом столь велики, что эффективно могут быть реализованы только на самых мощных ЭВМ.

Вопросы Р. с. а., связанные с изучением реального строения твёрдого тела по дифракц. данным, рассмотрены в ст. Рентгенография материалов .

Лит.: Белов Н. В., Структурная кристаллография, М., 1951; Б о к и й Г. Б., Порай-Кошиц М. А., Рентгеноструктурный анализ, 2 изд., т. 1, М., 1964; Липсон Г., К о к р е н В., Определение структуры кристаллов, пер. с англ., М., 1956; Бюргер М., Структура кристаллов и векторное пространство, пер. с англ., М., 1961; Г и н ь е А., Рентгенография кристаллвв. Теория и практика, пер. с франц., М., 1961; Stout G, Н., J е n s е n L. Н., X-ray structure determination, N. Y.- L., 1968; X е и к е р Д. М., Рентгеновская дифрактометрия монокристаллов, Л., 1973; Бландел Т., Джонсон Л., Кристаллография белка, пер. с англ., М., 1979; Вайнштейн Б. К., Симметрия кристаллов. Методы структурной кристаллографии, М., 1979; Electron and magnetization densities in molecules and crystals, ed. by P. Becker, N. Y.- L., 1980; Кристаллография и кристаллохимия, М., 1986; Structure and physical properties of crystals, Barselona, 1991. В. И. Симонов .

Рентгеновские лучи, открытые в 1895 г. В. Рентгеном – это электромагнитные колебания весьма малой длины волны, сравнимой с атомными размерами, возникающими при воздействии на вещество быстрыми электронами.

Рентгеновские лучи широко используются в науке и технике.

Их волновая природа установлена в 1912 г. немецкими физиками М.Лауэ, В.Фридрихом и П. Книппингом, открывшими явление дифракции рентгеновских лучей на атомной решётке кристаллов. Направив узкий пучок рентгеновских лучей на неподвижный кристалл, они зарегистрировали на помещённой за кристаллом фотопластинке дифракционную картину, которая состояла из большого числа закономерно расположенных пятен. Каждое пятно - след дифракционного луча, рассеянного кристаллом. Рентгенограмма, полученная таким методом носит название лауэграммы. Это открытие явилось основой рентгеноструктурного анализа.

Длины волн рентгеновских лучей, используемых в практических целях, лежат в пределах от нескольких ангстрем до долей ангстрема (Å), что соответствует энергии электронов, вызывающих рентгеновское излучение от 10³до10 5 эв.

Рентгеноструктурный анализ это метод исследования строения тел, использующий явление дифракции рентгеновских лучей, метод исследования структуры вещества по распределению в пространстве и интенсивностям рассеянного на анализируемом объекте рентгеновского излучения. Дифракционная картина зависит от длины волны используемых рентгеновских лучей и строения объекта. Для исследования атомной структуры применяют излучение с длиной волны ~1Å, т.е. порядка размеров атома.

Методами рентгеноструктурного анализа изучают металлы, сплавы, минералы, неорганические и органические соединения, полимеры, аморфные материалы, жидкости и газы, молекулы белков, нуклеиновых кислот и т.д. Рентгеноструктурный анализ является основным методом определения структуры кристаллов. При исследовании кристаллов он даёт наибольшую информацию. Это обусловлено тем, что кристаллы обладают строгой периодичностью строения и представляют собой созданною самой природой дифракционную решётку для рентгеновских лучей. Однако он доставляет ценные сведения и при исследовании тел с менее упорядоченной структурой, таких, как жидкости, аморфные тела, жидкие кристаллы, полимеры и другие. На основе многочисленных уже расшифрованных атомных структур может быть решена и обратная задача: по рентгенограмме поликристаллического вещества, например легированной стали, сплава, руды, лунного грунта, может быть установлен кристаллический состав этого вещества, то есть выполнен фазовый анализ.

В ходе рентгеноструктурного анализа исследуемый образец помещают на пути рентгеновских лучей и регистрируют дифракционную картину, возникающую в результате взаимодействия лучей с веществом. На следующем этапе исследования анализируют дифракционную картину и расчётным путём устанавливают взаимное расположение частиц в пространстве, вызвавшее появление данной картины.

Рентгеноструктурный анализ кристаллических веществ распадается на два этапа.

1) Определение размеров элементарной ячейки кристалла, числа частиц (атомов, молекул) в элементарной ячейке и симметрии расположения частиц (так называемой пространственной группы). Эти данные получают путём анализа геометрии расположения дифракционных максимумов.

2) Расчёт электронной плотности внутри элементарной ячейки и определение координат атомов, которые отождествляются с положением максимумов электронной плотности. Эти данные получают анализом интенсивности дифракционных максимумов.

Методы рентгеновской съёмки кристаллов.

Существуют различные экспериментальные методы получения и регистрации дифракционной картины. В любом случае имеется источник рентгеновского излучения, система для выделения узкого пучка рентгеновских лучей, устройство для закрепления и ориентирования образца в пучке и приёмник рассеянного образцом излучения. Приёмником служит фотоплёнка, либо ионизационные или сцинтилляционные счётчики рентгеновских квантов. Метод регистрации с помощью счётчиков (дифрактометрический) обеспечивает значительно более высокую точность определения интенсивности регистрируемого излучения.

Из условия Вульфа – Брэгга непосредственно следует, что при регистрации дифракционной картины один из двух входящих в него параметров ¾l -длина волны или q -угол падения, должен быть переменным.

Основными рентгеновской съёмки кристаллов являются: метод Лауэ, метод порошка (метод дебаеграмм), метод вращения и его разновидность – метод качания и различные методы рентгенгониометра.

В методе Лауэ на монокристаллический образец падает пучок немонохроматических («белых») лучей (рис.). Дифрагируют лишь те лучи, длины волн которых удовлетворяют условию Вульфа – Брэгга. Дифракционные пятна на лауграмме (рис.) располагаются по эллипсам, гиперболам и прямым, обязательно проходящим через пятно от первичного пучка.

Рис.– Схема метода рентгеновской съёмки по Лауэ: 1- пучок рентгеновских лучей, падающих на монокристаллический образец; 2 – коллиматор; 3 – образец; 4 – дифрагированные лучи; 5 – плоская фотоплёнка;

б – типичная лауэграмма.

Важное свойство лауэграммы состоит в том, что при соответствующей ориентировке кристалла симметрия расположения этих кривых отражает симметрию кристалла. По характеру пятен на лауэграммах можно выявить внутренние напряжения и некоторые другие дефекты кристаллической структуры. Индицирование же отдельных пятен лауэграммы весьма затруднительно. Поэтому метод Лауэ применяют исключительно для нахождения нужной ориентировки кристалла и определения его элементов симметрии. Этим методом проверяют качество моно кристаллов при выборе образца для более полного структурного исследования.

В методе порошка (рис),так же как и во всех остальных описываемых ниже методах рентгеновской съёмки, используется монохроматическое излучение. Переменным параметром является угол q падения так как в поликристаллическом порошковом образце всегда присутствуют кристаллики любой ориентации по отношению к направлению первичного пучка.

Рис– схема рентгеновской съёмки по методу порошка: 1 – первичный пучок; 2 – порошковый или поликристаллический образец; 3 – фотоплёнка, свёрнутая по окружности; 4 – дифракционные конусы; 5 – «дуги» на фотоплёнке, возникающие при пересечении её поверхности с дифракционными конусами;

б – типичная порошковая рентгенограмма (дибаеграмма).

Лучи от всех кристалликов, у которых плоскости с данным межплоскостным расстоянием d hk1 находятся в «отражающем положении», то есть удовлетворяют условию Вульфа – Брэгга, образуют вокруг первичного луча конус с углом растра 4q. Каждому d hk1 соответствует свой дифракционный конус. Пересечение каждого конуса дифрагированных рентгеновских лучей с полоской фотоплёнки, свёрнутой в виде цилиндра, ось которого проходит через образец, приводит к появлению на ней следов, имеющих вид дужек, расположенных симметрично относительно первичного пучка (рис.). Зная расстояния между симметричными «дугами», можно вычислить соответствующие им межплоскостные расстояния d в кристалле.

Метод порошка наиболее прост и удобен с точки зрения техники экспермента, однако единственная поставляемая им информация – выбор межплоскостных расстояний – позволяет расшифровывать самые простые структуры.

В методе вращения (рис.) переменным параметром является угол q.

Съёмка производится на цилиндрическую фотоплёнку. В течение всего времени экспозиции кристаллравномерно вращается вокруг свей оси, совпадающей с каким-либо важным кристаллографическим направлением и с осью образуемого планкой цилиндра. Дифракционные лучи идут по образующим конусов, которые при пересечении с плёнкой дают линии, состоящие из пятен (так называемые слоевые линии.

Метод вращения даёт экспериментатору более богатую информацию, чем метод порошка. По расстояниям между слоевыми линиями можно рассчитать период решётки в направлении оси вращения кристалла.

Рис. – схема рентгеновской съёмки по методу вращения: 1 – первичный пучок;

2 – образец (вращается по стрелке); 3 – фотоплёнка цилиндрической формы;

б – типичная рентгенограмма вращения.

В рассматриваемом методе упрощается индицирование пятен рентгенограммы. Так если кристалл вращается вокруг оси с решётки, то все пятна на линии, проходящей через след первичного луча, имеют индексы (h,k,0), на соседних с ней слоевых линиях – соответственно (h,k,1) и (h,k,1 ¯) и так далее. Однако и метод вращения не даёт всей возможной информации, так никогда неизвестно, при каком угле поворота кристалла вокруг оси вращения образовалось то или иное дифракционное пятно.

В методе качания , который является разновидностью метода вращения, образец не совершает полного вращения, а «качается» вокруг той же оси в небольшом угловом интервале. Это облегчает индицирование пятен, так как позволяет как бы получать рентгенограмму вращения по частям и определять с точностью до величины интервала качания, под каким углом поворота кристалла к первичному пучку возникли те или иные дифракционные пятна.

Наиболее богатую информацию дают методы рентгеногониометра . Рентгеновский гониометр, прибор, с помощью которого можно одновременно регистрировать направление дифрагированных на исследуемом образце рентгеновских лучей и положение образца в момент возникновения дифракции. Один из них – метод Вайссенберга, является дальнейшим развитием метода вращения. В отличие от последнего, в рентгеногониометре Вайссенберга все дифракционные конусы, кроме одного, закрываются цилиндрической ширмой, а пятна оставшегося дифракционного конуса (или, что то же, слоевой линии) «разворачиваются» на всю площадь фотоплёнки путём её возвратно-поступательного осевого перемещения синхронно с вращением кристалла. Это позволяет определить, при какой ориентации кристалла возникло каждое пятно вассенбергограммы.

Рис. Принципиальная схема рентгенгониометра Вайссенберга: 1 – неподвижная ширма, пропускающая только один дифракционный конус; 2 – кристалл, поворачивающийся вокруг оси Х – Х; 3 – цилиндрическая фотоплёнка, двигающаяся поступательно вдоль оси Х – Х синхронно с вращением кристалла 2; 4 – дифракционный конус, пропущенный ширмой; 5 – первичный пучок.

Существуют и другие методы съёмки, в которых применяется одновременное синхронное движение образца и фотоплёнки. Важнейшими из них являются метод фотографирования обратной решётки и прецессионный метод Бюргера. Во всех этих методах использована фотографическая регистрация дифракционной картины. В рентгеновском дифрактометре можно непосредственно измерять интенсивность дифракционных отражений с помощью пропорциональных, сцинтилляционных и других счётчиков рентгеновских квантов.

Применение рентгеноструктурного анализа.

Рентгеноструктурный анализ позволяет объективно устанавливать структуру кристаллических веществ, в том числе таких сложных, как витамины, антибиотики, координационные соединения и т.д. Полное структурное исследование кристалла часто позволяет решить и чисто химические задачи, например установление или уточнение химической формулы, типа связи, молекулярного веса при известной плотности или плотности при известном молекулярном весе, симметрии и конфигурации молекул и молекулярных ионов.

Рентгеноструктурный анализ с успехом применяется для изучения кристаллического состояния полимеров. Ценные сведения даёт рентгеноструктурный анализ и при исследовании аморфных и жидких тел. Рентгенограммы таких тел содержат несколько размытых дифракционных колец, интенсивность которых быстро падает с увеличением q. По ширине, форме и интенсивности этих колец можно делать заключения об особенностях ближнего порядка в той или иной конкретной жидкой или аморфной структуре.

Важной областью применения рентгеновских лучей является рентгенография металлов и сплавов, которая превратилась в отдельную отрасль науки. Понятие «рентгенография» включает в себя, наряду с полным или частичным рентгеноструктурным анализом, также и другие способы использования рентгеновских лучей – рентгеновскую дефектоскопию (просвечивание), рентгеноспектральный анализ, рентгеновскую микроскопию и другое. Определены структуры чистых металлов и многих сплавов. основанная на рентгеноструктурном анализе кристаллохимия сплавов – один из ведущих разделов металловедения. Ни одна диаграмма состояния металлических сплавов не может считаться надёжно установленной, если данные сплавы не исследованы методами рентгеноструктурного анализа. Благодаря применению методов рентгеноструктурного анализа оказалось возможным глубоко изучить структурные изменения, протекающие в металлах и сплавах при их пластической и термической обработке.

Метод рентгеноструктурного анализа свойственны и серьёзные ограничения. Для проведения полного рентгеноструктурного анализа необходимо, чтобы вещество хорошо кристаллизовалось и давало достаточно устойчивые кристаллы. Иногда необходимо проводить исследование при высоких или низких температурах. Это сильно затрудняет проведение эксперимента. Полное исследование очень трудоёмко, длительно и сопряжено с большим объёмом вычислительной работы.

Для установления атомной структуры средней сложности (~50- 100 атомов в элементарной ячейке) необходимо измерять интенсивности нескольких сотен и даже тысяч дифракционных отражений. Эту весьма трудоёмкую и кропотливую работу выполняют автоматические микроденситомеры и дифрактометры, управляемые ЭВМ, иногда в течение нескольких недель и даже месяцев (например, при анализе структур белков, когда число отражений возрастает до сотен тысяч). В связи с этим в последние годы для решения задач рентгеноструктурного анализа получили широкое применение быстродействующие ЭВМ. Однако даже с применением ЭВМ определение структуры остаётся сложной и трудоёмкой работой. Применение в дифрактометре нескольких счётчиков, которые могут параллельно регистрировать отражения, время эксперимента удаётся сократить. Дифрактометрические измерения превосходят фоторегистрацию по чувствительности и точности.

Позволяя объективно определить структуру молекул и общий характер взаимодействия молекул в кристалле, исследование методом рентгеноструктурного анализа не всегда даёт возможность с нужной степенью достоверности судить о различиях в характере химических связей внутри молекулы, так как точность определения длин связей и валентных углов часто оказывается недостаточной для этой цели. Серьёзным ограничением метода является также трудность определения положений лёгких атомов и особенно атомов водорода.

Реферат выполнила студентка II курса 2-ой группы Сапегина Н.Л.

Министерство здравоохранения Украины

Национальная фармацевтическая академия Украины

Кафедра физики и математики

Курс биофизика и физические методы анализа

г. Харьков

Введение

Рентгеновские лучи, открытые в 1895 г. В. Рентгеном – это электромагнитные колебания весьма малой длины волны, сравнимой с атомными размерами, возникающими при воздействии на вещество быстрыми электронами.

Рентгеновские лучи широко используются в науке и технике.

Их волновая природа установлена в 1912 г. немецкими физиками М.Лауэ, В.Фридрихом и П.Книппингом, открывшими явление дифракции рентгеновских лучей на атомной решётке кристаллов. Направив узкий пучок рентгеновских лучей на неподвижный кристалл, они зарегистрировали на помещённой за кристаллом фотопластинке дифракционную картину, которая состояла из большого числа закономерно расположенных пятен. Каждое пятно - след дифракционного луча, рассеянного кристаллом. Рентгенограмма, полученная таким методом носит название лауэграммы. Это открытие явилось основой рентгеноструктурного анализа.

Длины волн рентгеновских лучей, используемых в практических целях, лежат в пределах от нескольких ангстрем до долей ангстрема (Å), что соответствует энергии электронов, вызывающих рентгеновское излучение от 10³ до 10 5 эв.

Рентгеновские спектры.

Различают два типа излучения: тормозное и характеристическое.

Тормозное излучение возникает при торможении электронов антикатодом рентгеновской трубки. Оно разлагается в сплошной спектр, имеющий резкую границу со стороны малых длин волн. Положение этой границы определяется энергией падающих на вещество электронов и не зависит от природы вещества. Интенсивность тормозного спектра быстро растёт с уменьшением массы бомбардирующих частиц и достигает значительной величины при возбуждении электронами.

Характеристические рентгеновские лучи образуются при выбивании электрона одного из внутренних слоёв атома с последующим переходом на освободившуюся орбиту электрона с какого-либо внешнего слоя. Они обладают линейчатым спектром, аналогичным оптическим спектрам газов. Однако между теми и другими спектрами имеется принципиальная разница: структура характеристического спектра рентгеновских лучей (число, относительное расположение и относительная яркость линий), в отличие от оптического спектра газов, не зависит от вещества (элемента), дающего этот спектр.

Спектральные линии характеристического спектра рентгеновских лучей образуют закономерные последовательности или серии. Эти серии обозначаются буквами K, L, M, N…, причем длины волн этих серий возрастают от K к L, от L к М и т. д. Наличие этих серий теснейшим образом связано со строением электронных оболочек атомов.

Характеристические рентгеновские спектры испускают атомы мишени, у которых при столкновении с заряженной частицей высокой энергии или фотоном первичного рентгеновского излучения с одной из внутренних оболочек (K-, L-, M-, … оболочек) вылетает электрон. Состояние атома с вакансией во внутренней оболочке (его начальное состояние) неустойчиво. Электрон одной из внешних оболочек может заполнить эту вакансию, и атом при этом переходит в конечное состояние с меньшей энергией (состояние с вакансией во внешней оболочке).

Избыток энергии атом может испустить в виде фотона характеристического излучения. Поскольку энергия Е 1 начального и Е 2 конечного состояний атома квантованы, возникает линия рентгеновского спектра с частотой n=(Е 1 - Е 2)/h, где h постоянная Планка.

Все возможные излучательные квантовые переходы атома из начального K-состояния образуют наиболее жёсткую (коротковолновую) K-серию. Аналогично образуются L-, M-, N-серии (рис. 1).

Рис. 1. Схема K-, L-, M-уровней атома и основные линии K-, L-серий

Зависимость от вещества проявляется только в том, что с увеличением порядкового номера элемента в системе Менделеева весь его характеристический рентгеновский спектр смещается в сторону более коротких волн. Г. Мозли в 1913 г. показал, что квадратный корень из частоты (или обратной длины волны) данной спектральной линии связан линейной зависимостью с атомным номером элемента Z. Закон Мозли сыграл весьма важную роль в физическом обосновании периодической системы Менделеева.

Другой весьма важной особенностью характеристических спектров рентгеновских лучей является то обстоятельство, что каждый элемент даёт свой спектр независимо от того, возбуждается ли этот элемент к испусканию рентгеновских лучей в свободном состоянии или в химическом соединении. Эта особенность характеристического спектра рентгеновских лучей используется для идентификации различных элементов в сложных соединениях и является основой рентгеноспектрального анализа.

Рентгеноспектральный анализ

Рентгеноспектральный анализ это раздел аналитической химии, использующий рентгеновские спектры элементов для химического анализа веществ. Рентгеноспектральный анализ по положению и интенсивности линий характеристического спектра позволяет установить качественный и количественный состав вещества и служит для экспрессного неразрушающего контроля состава вещества.

В рентгеновской спектроскопии для получения спектра используется явление дифракции лучей на кристаллах или, в области 15-150 Å, на дифракционных штриховых решётках, работающих при малых (1-12°) углах скольжения. Основой рентгеновской спектроскопии высокого разрешения является закон Вульфа-Брэга, который связывает длину волны рентгеновских лучей l, отраженных от кристалла в направлении q, с межплоскостным расстоянием кристалла d.

Угол q называется углом скольжения. Он направлением падающих на кристалл или отражённых от него лучей с отражающей поверхностью кристалла. Число n характеризует так называемый порядок отражения, в котором при заданных l и d может наблюдаться дифракционный максимум.

Частота колебания рентгеновских лучей (n=с/l), испущенных каким-либо элементом, линейно связана с его атомным номером:

Ö n/R=A(Z-s) (2)

где n - частота излучения, Z – атомный номер элемента, R – постоянная Ридберга, равная 109737,303 см -1 , s - средняя константа экранирования, в небольших пределах, зависящая от Z, А – постоянная для данной линии величина.

Рентгеноспектральный анализ основан на использовании зависимости частоты излучения линий характеристического спектра элемента от их атомного номера и связи между интенсивностью этих линий и числом атомов, принимающих участие в излучении.

Рентгеновское возбуждение атомов вещества может возникать в результате бомбардировки образца электронами больших энергий или при его облучении рентгеновскими лучами. Первый процесс называется прямым возбуждением, последний – вторичным или флуоресцентным. В обоих случаях энергия электрона или кванта первичной рентгеновской радиации, бомбардирующих излучающий атом, должна быть больше энергии, необходимой для вырывания электрона из определённой внутренней оболочки атома. Электронная бомбардировка исследуемого вещества приводит к появлению не только характеристического спектра элемента, но и, как правило, достаточно интенсивного непрерывного излучения. Флуоресцентное излучение содержит только линейчатый спектр.

В ходе первичного возбуждения спектра происходит интенсивное разогревание исследуемого вещества, отсутствующее при вторичном возбуждении. Первичный метод возбуждения лучей предполагает помещение исследуемого вещества внутрь откачанной до высокого вакуума рентгеновской трубки, в то время как для получения спектров флуоресценции исследуемые образцы могут располагаться на пути пучка первичных рентгеновских лучей вне вакуума и легко сменять друг друга. Поэтому приборы, использующие спектры, флуоресценции (несмотря на то, что интенсивность вторичного излучения в тысячи раз меньше интенсивности лучей, полученных первичным методом), в последнее время почти полностью вытеснили из практики установки, в которых осуществляется возбуждение рентгеновских лучей с помощью потока быстрых электронов.

Аппаратура для рентгеноспектрального анализа.

Рентгеновский флуоресцентный спектрометр (рис 2) состоит из трёх основных узлов: рентгеновской трубки, излучение которой возбуждает спектр флуоресценции исследуемого образца, кристалла – анализатора для разложения лучей в спектр и детектора для измерения интенсивности спектральных линий.

Рис. 2. Схема рентгеновского многоканального флуоресцентного спектрометра с плоским (а) изогнутым (б) кристаллами: 1 – рентгеновская трубка; 2 – анализируемый образец; 3 – диафрагма Соллера; 4 – плоский и изогнутый (радиус – 2R) кристалл – анализаторы; 5 – детектор излучения; 6 – так называемый монитор, дополнительное регистрирующее устройство, позволяющее осуществлять измерение относительной интенсивности спектральных линий при отсутствии стабилизации интенсивности источника рентгеновского излучения; R – радиус так называемой окружности изображения.

В наиболее часто используемой на практике конструкции спектрометра источник излучения и детектор располагаются на одной окружности, называемой окружностью изображения, а кристалл – в центре. Кристалл может вращаться вокруг оси, проходящей через центр этой окружности. При изменении угла скольжения на величину q детектор поворачивается на угол 2q

Наряду со спектрометрами с плоским кристаллом широкое распространение получили фокусирующие рентгеновские спектрометры, работающие «на отражение» (методы Капицы – Иоганна и Иогансона) и на «прохождение» (методы Коуша и Дю-Монда). Они могут быть одно- и многоканальными. Многоканальные, так называемые рентгеновские квантометры, аутрометры и другие, позволяют одновременно определять большое число элементов и автоматизировать процесс анализа. обычно они снабжаются специальными рентгеновскими трубками и устройствами, обеспечивающими высокую степень стабилизации интенсивности рентгеновских лучей. Область длин волн, в которой может использоваться спектрометр, определяется межплоскостным расстоянием кристалла – анализатора (d). В соответствии с уравнением (1) кристалл не может «отражать» лучи, длина волн, которых превосходит 2d.

Число кристаллов, используемых в рентгеноспектральном анализе, довольно велико. Наиболее часто применяют кварц, слюду, гипс и LiF.

В качестве детекторов рентгеновского излучения, в зависимости от области спектра, с успехом используют сётчики Гейгера, пропорциональные, кристаллические и сцинтилляционные счётчики квантов.

Применение рентгеноспектрального анализа.

Рентгеноспектральный анализ может быть использован для количественного определения элементов от Mg 12 до U 92 в материалах сложного химического состава – в металлах и сплавах, минералах, стекле, керамике, цементах, пластмассах, абразивах, пыли и различных продуктах химических технологий. Наиболее широко рентгеноспектральный анализ применяют в металлургии и геологии для определения макро- (1-100%) и микрокомпонентов (10 -1 – 10 -3 %).

Иногда для повышения чувствительности рентгеноспектрального анализа его комбинируют с химическими и радиометрическими методами. Предельная чувствительность рентгеноспектрального анализа зависит от атомного номера определяемого элемента и среднего атомного номера определяемого образца. Оптимальные условия реализуются при определении элементов среднего атомного номера в образце, содержащем лёгкие элементы. Точность рентгеноспектрального анализа обычно 2-5 относительных процента, вес образца – несколько граммов. Длительность анализа от нескольких минут до 1 – 2 часов. Наибольшие трудности возникают при анализе элементов с малым Z и работе в мягкой области спектра.

На результаты анализа влияют общий состав пробы (поглощение), эффекты селективного возбуждения и поглощения излучения элементами – спутниками, а также фазовый состав и зернистость образцов.

Рентгеноспектральный анализ хорошо зарекомендовал себя при определении Pb и Br в нефти и бензинах, серы в газолине, примесей в смазках и продуктах износа в машинах, при анализе катализаторов, при осуществлении экспрессных силикатных анализов и других.

Для возбужения мягкого излучения и его использования в анализе успешно применяется бомбардировка образцов a-частицами (например от полониевого источника).

Важной областью применения рентгеноспектрального анализа является определение толщины защитных покрытий без нарушения поверхности изделий.

В тех случаях, когда не требуется высокого разрешения в разделении характеристического излучения от образца и анализируемые элементы отличаются по атомному номеру более чем на два, с успехом может быть применён бескристальный метод рентгеноспектрального анализа. В нём используется прямая пропорциональность между энергией кванта и амплитудой импульса, который создаётся им в пропорциональном или сцинтилляционном счётчиках. Это позволяет выделить и исследовать импульсы, соответствующие спектральной линии элемента с помощью амплитудного анализатора.

Важным методом рентгеноспектрального анализа является анализ микрообъёмов вещества.

Основу микроанализатора (рис. 3) составляет микрофокусная рентгеновская трубка, объединённая с оптическим металл - микроскопом.

Специальная электронно–оптическая система формирует тонкий электронный зонд, который бомбардирует небольшую, примерно 1 –2 мк, область исследуемого шлифа, помещённого на аноде, и возбуждает рентгеновские лучи, спектральный состав которых далее анализируется с помощью спектрографа с изогнутым кристаллом. Такой прибор позволяет проводить рентгеноспектральный анализ шлифа «в точке» на несколько элементов или исследовать распределение одного из них вдоль выбранного направления. В созданных позднее растровых микроанализаторах электронный зонд обегает заданную площадь поверхности анализируемого образца и позволяет наблюдать на экране монитора увеличенную в десятки раз картину распределения химических элементов на поверхности шлифа. Существуют как вакуумные (для мягкой области спектра), так и не вакуумные варианты таких приборов. Абсолютная чувствительность метода 10 -13 –10 -15 грамм. С его помощью с успехом анализируют фазовый состав легированных сплавов и исследуют степень их однородности, изучают распределения легирующих добавок в сплавах и их перераспределение в процессе старения, деформации или термообработки, исследуют процесс диффузии и структуры диффузионных и других промежуточных слоёв, изучают процессы, сопровождающие обработку и пайку жаропрочных сплавов, а также исследуют неметаллические объекты в химии, минералогии и геохимии. В последнем случае на поверхности шлифов предварительно напыляют тонкий слой (50-100Å) алюминия, бериллия или углерода.

Рис. 3. Схема рентгеновского микроанализатора Кастена и Гинье:

1 – электронная пушка; 2 – диафрагма; 3 – первая собирающая электростатическая линза; 4 – апертурная диафрагма; 5 – вторая собирающая электростатическая линза; 6 – исследуемый образец; 7 – рентгеновский спектрометр; 8 – зеркало; 9 – объектив металлографического оптического микроскопа; ВН – высокое напряжение.

Самостоятельным разделом рентгеноспектрального анализа является исследование тонкой структуры рентгеновских спектров поглощения и эмиссии атомов в химических соединениях и сплавах. Детальное изучение этого явления открывает пути для экспериментального исследования характера междуатомного взаимодействия в химических соединениях, металлах и сплавах и изучения энергетической структуры электронного спектра в них, определения эффективных зарядов, сосредоточенных на различных атомах в молекулах, и решения других вопросов химии и физики конденсированных сред.

Рентгеноструктурный анализ

Рентгеноструктурный анализ это метод исследования строения тел, использующий явление дифракции рентгеновских лучей, метод исследования структуры вещества по распределению в пространстве и интенсивностям рассеянного на анализируемом объекте рентгеновского излучения. Дифракционная картина зависит от длины волны используемых рентгеновских лучей и строения объекта. Для исследования атомной структуры применяют излучение с длиной волны ~1Å, т.е. порядка размеров атома.

Методами рентгеноструктурного анализа изучают металлы, сплавы, минералы, неорганические и органические соединения, полимеры, аморфные материалы, жидкости и газы, молекулы белков, нуклеиновых кислот и т.д. Рентгеноструктурный анализ является основным методом определения структуры кристаллов. При исследовании кристаллов он даёт наибольшую информацию. Это обусловлено тем, что кристаллы обладают строгой периодичностью строения и представляют собой созданною самой природой дифракционную решётку для рентгеновских лучей. Однако он доставляет ценные сведения и при исследовании тел с менее упорядоченной структурой, таких, как жидкости, аморфные тела, жидкие кристаллы, полимеры и другие. На основе многочисленных уже расшифрованных атомных структур может быть решена и обратная задача: по рентгенограмме поликристаллического вещества, например легированной стали, сплава, руды, лунного грунта, может быть установлен кристаллический состав этого вещества, то есть выполнен фазовый анализ.

В ходе рентгеноструктурного анализа исследуемый образец помещают на пути рентгеновских лучей и регистрируют дифракционную картину, возникающую в результате взаимодействия лучей с веществом. На следующем этапе исследования анализируют дифракционную картину и расчётным путём устанавливают взаимное расположение частиц в пространстве, вызвавшее появление данной картины.

Рентгеноструктурный анализ кристаллических веществ распадается на два этапа.

Определение размеров элементарной ячейки кристалла, числа частиц (атомов, молекул) в элементарной ячейке и симметрии расположения частиц (так называемой пространственной группы). Эти данные получают путём анализа геометрии расположения дифракционных максимумов.

Расчёт электронной плотности внутри элементарной ячейки и определение координат атомов, которые отождествляются с положением максимумов электронной плотности. Эти данные получают анализом интенсивности дифракционных максимумов.

Методы рентгеновской съёмки кристаллов.

Существуют различные экспериментальные методы получения и регистрации дифракционной картины. В любом случае имеется источник рентгеновского излучения, система для выделения узкого пучка рентгеновских лучей, устройство для закрепления и ориентирования образца в пучке и приёмник рассеянного образцом излучения. Приёмником служит фотоплёнка, либо ионизационные или сцинтилляционные счётчики рентгеновских квантов. Метод регистрации с помощью счётчиков (дифрактометрический) обеспечивает значительно более высокую точность определения интенсивности регистрируемого излучения.

Из условия Вульфа – Брэгга непосредственно следует, что при регистрации дифракционной картины один из двух входящих в него параметров ¾ l -длина волны или q -угол падения, должен быть переменным.

Основными рентгеновской съёмки кристаллов являются: метод Лауэ, метод порошка (метод дебаеграмм), метод вращения и его разновидность – метод качания и различные методы рентгенгониометра.

В методе Лауэ на монокристаллический образец падает пучок немонохроматических («белых») лучей (рис. 4 а). Дифрагируют лишь те лучи, длины волн которых удовлетворяют условию Вульфа – Брэгга. Дифракционные пятна на лауграмме (рис.4 б) располагаются по эллипсам, гиперболам и прямым, обязательно проходящим через пятно от первичного пучка.

Рис. 4. а – Схема метода рентгеновской съёмки по Лауэ: 1- пучок рентгеновских лучей, падающих на монокристаллический образец; 2 – коллиматор; 3 – образец; 4 – дифрагированные лучи; 5 – плоская фотоплёнка;

б – типичная лауэграмма.

Важное свойство лауэграммы состоит в том, что при соответствующей ориентировке кристалла симметрия расположения этих кривых отражает симметрию кристалла. По характеру пятен на лауэграммах можно выявить внутренние напряжения и некоторые другие дефекты кристаллической структуры. Индицирование же отдельных пятен лауэграммы весьма затруднительно. Поэтому метод Лауэ применяют исключительно для нахождения нужной ориентировки кристалла и определения его элементов симметрии. Этим методом проверяют качество моно кристаллов при выборе образца для более полного структурного исследования.

В методе порошка (рис 5.а), так же как и во всех остальных описываемых ниже методах рентгеновской съёмки, используется монохроматическое излучение. Переменным параметром является угол q падения так как в поликристаллическом порошковом образце всегда присутствуют кристаллики любой ориентации по отношению к направлению первичного пучка.

Рис 5.а – схема рентгеновской съёмки по методу порошка: 1 – первичный пучок; 2 – порошковый или поликристаллический образец; 3 – фотоплёнка, свёрнутая по окружности; 4 – дифракционные конусы; 5 – «дуги» на фотоплёнке, возникающие при пересечении её поверхности с дифракционными конусами;

б – типичная порошковая рентгенограмма (дибаеграмма).

Лучи от всех кристалликов, у которых плоскости с данным межплоскостным расстоянием d hk1 находятся в «отражающем положении», то есть удовлетворяют условию Вульфа – Брэгга, образуют вокруг первичного луча конус с углом растра 4q. Каждому d hk1 соответствует свой дифракционный конус. Пересечение каждого конуса дифрагированных рентгеновских лучей с полоской фотоплёнки, свёрнутой в виде цилиндра, ось которого проходит через образец, приводит к появлению на ней следов, имеющих вид дужек, расположенных симметрично относительно первичного пучка (рис. 5.б). Зная расстояния между симметричными «дугами», можно вычислить соответствующие им межплоскостные расстояния d в кристалле.

Метод порошка наиболее прост и удобен с точки зрения техники экспермента, однако единственная поставляемая им информация – выбор межплоскостных расстояний – позволяе расшифровывать самы простые структуры.

В методе вращения (рис. 6.а) переменным параметром является угол q.

Съёмка производится на цилиндрическую фотоплёнку. В течение всего времени экспозиции кристалл равномерно вращается вокруг свей оси, совпадающей с каким-либо важным кристаллографическим направлением и с осью образуемого планкой цилиндра. Дифракционные лучи идут по образующим конусов, которые при пересечении с плёнкой дают линии, состоящие из пятен (так называемые слоевые линии (рис. 6.б).

Метод вращения даёт экспериментатору более богатую информацию, чем метод порошка. По расстояниям между слоевыми линиями можно рассчитать период решётки в направлении оси вращения кристалла.

Рис. 6.а – схема рентгеновской съёмки по методу вращения: 1 – первичный пучок;

2 – образец (вращается по стрелке); 3 – фотоплёнка цилиндрической формы;

б – типичная рентгенограмма вращения.

В рассматриваемом методе упрощается индицирование пятен рентгенограммы. Так если кристалл вращается вокруг оси с решётки, то все пятна на линии, проходящей через след первичного луча, имеют индексы (h,k,0), на соседних с ней слоевых линиях – соответственно (h,k,1) и (h,k,1 ¯) и так далее. Однако и метод вращения не даёт всей возможной информации, так никогда неизвестно, при каком угле поворота кристалла вокруг оси вращения образовалось то или иное дифракционное пятно.

В методе качания, который является разновидностью метода вращения, образец не совершает полного вращения, а «качается» вокруг той же оси в небольшом угловом интервале. Это облегчает индицирование пятен, так как позволяет как бы получать рентгенограмму вращения по частям и определять с точностью до величины интервала качания, под каким углом поворота кристалла к первичному пучку возникли те или иные дифракционные пятна.

Наиболее богатую информацию дают методы рентгеногониометра. Рентгеновский гониометр, прибор, с помощью которого можно одновременно регистрировать направление дифрагированных на исследуемом образце рентгеновских лучей и положение образца в момент возникновения дифракции. Один из них – метод Вайссенберга, является дальнейшим развитием метода вращения. В отличие от последнего, в рентгеногониометре Вайссенберга (рис. 7) все дифракционные конусы, кроме одного, закрываются цилиндрической ширмой, а пятна оставшегося дифракционного конуса (или, что то же, слоевой линии) «разворачиваются» на всю площадь фотоплёнки путём её возвратно-поступательного осевого перемещения синхронно с вращением кристалла. Это позволяет определить, при какой ориентации кристалла возникло каждое пятно вассенбергограммы.

Рис. 7. Принципиальная схема рентгенгониометра Вайссенберга: 1 – неподвижная ширма, пропускающая только один дифракционный конус; 2 – кристалл, поворачивающийся вокруг оси Х – Х; 3 – цилиндрическая фотоплёнка, двигающаяся поступательно вдоль оси Х – Х синхронно с вращением кристалла 2; 4 – дифракционный конус, пропущенный ширмой; 5 – первичный пучок.

Существуют и другие методы съёмки, в которых применяется одновременное синхронное движение образца и фотоплёнки. Важнейшими из них являются метод фотографирования обратной решётки и прецессионный метод Бюргера. Во всех этих методах использована фотографическая регистрация дифракционной картины. В рентгеновском дифрактометре можно непосредственно измерять интенсивность дифракционных отражений с помощью пропорциональных, сцинтилляционных и других счётчиков рентгеновских квантов.

Применение рентгеноструктурного анализа.

Рентгеноструктурный анализ позволяет объективно устанавливать структуру кристаллических веществ, в том числе таких сложных, как витамины, антибиотики, координационные соединения и т.д. Полное структурное исследование кристалла часто позволяет решить и чисто химические задачи, например установление или уточнение химической формулы, типа связи, молекулярного веса при известной плотности или плотности при известном молекулярном весе, симметрии и конфигурации молекул и молекулярных ионов.

Рентгеноструктурный анализ с успехом применяется для изучения кристаллического состояния полимеров. Ценные сведения даёт рентгеноструктурный анализ и при исследовании аморфных и жидких тел. Рентгенограммы таких тел содержат несколько размытых дифракционных колец, интенсивность которых быстро падает с увеличением q. По ширине, форме и интенсивности этих колец можно делать заключения об особенностях ближнего порядка в той или иной конкретной жидкой или аморфной структуре.

Важной областью применения рентгеновских лучей является рентгенография металлов и сплавов, которая превратилась в отдельную отрасль науки. Понятие «рентгенография» включает в себя, наряду с полным или частичным рентгеноструктурным анализом, также и другие способы использования рентгеновских лучей – рентгеновскую дефектоскопию (просвечивание), рентгеноспектральный анализ, рентгеновскую микроскопию и другое. Определены структуры чистых металлов и многих сплавов. основанная на рентгеноструктурном анализе кристаллохимия сплавов – один из ведущих разделов металловедения. Ни одна диаграмма состояния металлических сплавов не может считаться надёжно установленной, если данные сплавы не исследованы методами рентгеноструктурного анализа. Благодаря применению методов рентгеноструктурного анализа оказалось возможным глубоко изучить структурные изменения, протекающие в металлах и сплавах при их пластической и термической обработке.

Методу рентгеноструктурного анализа свойственны и серьёзные ограничения. Для проведения полного рентгеноструктурного анализа необходимо, чтобы вещество хорошо кристаллизовалось и давало достаточно устойчивые кристаллы. Иногда необходимо проводить исследование при высоких или низких температурах. Это сильно затрудняет проведение эксперимента. Полное исследование очень трудоёмко, длительно и сопряжено с большим объёмом вычислительной работы.

Для установления атомной структуры средней сложности (~50- 100 атомов в элементарной ячейке) необходимо измерять интенсивности нескольких сотен и даже тысяч дифракционных отражений. Эту весьма трудоёмкую и кропотливую работу выполняют автоматические микроденситомеры и дифрактометры, управляемые ЭВМ, иногда в течение нескольких недель и даже месяцев (например, при анализе структур белков, когда число отражений возрастает до сотен тысяч). В связи с этим в последние годы для решения задач рентгеноструктурного анализа получили широкое применение быстродействующие ЭВМ. Однако даже с применением ЭВМ определение структуры остаётся сложной и трудоёмкой работой. Применение в дифрактометре нескольких счётчиков, которые могут параллельно регистрировать отражения, время эксперимента удаётся сократить. Дифрактометрические измерения превосходят фоторегистрацию по чувствительности и точности.

Позволяя объективно определить структуру молекул и общий характер взаимодействия молекул в кристалле, исследование методом рентгеноструктурного анализа не всегда даёт возможность с нужной степенью достоверности судить о различиях в характере химических связей внутри молекулы, так как точность определения длин связей и валентных углов часто оказывается недостаточной для этой цели. Серьёзным ограничением метода является также трудность определения положений лёгких атомов и особенно атомов водорода.

Список литературы

Жданов Г.С. Физика твёрдого тела, М., 1962.

Блохин М.А., Физика рентгеновских лучей, 2 изд., М., 1957.

Блохин М.А., Методы рентгеноспектральных исследований, М., 1959.

Ванштейн Э.Е., Рентгеновские спектры атомов в молекулах химических соединений и в сплавах, М.-Л., 1950.

Бокай Г.Б., Порай-Кошиц М.А., Рентгеноструктурный анализ, М., 1964.

Шишаков Н.А., Основные понятия структурного анализа, М., 1961.