Английский Биология География

Химическая эволюция и развития жизни на земле. Химическая эволюция (Абиогенез)

Как отмечалось выше, основной особенностью современного уровня анализа химической формы материи является переход от третьей теоретической системы - учения о химических процессах - к четвертой, получившей название эволюционной химии. Само возникновение эволюционной химии стало результатом предшествующего пути развития, пройденного этой наукой. Оно подготовлено изучением и созданием все более сложных веществ и все более глубоким проникновением в законы их строения и механизмы изменений.

«Идея эволюции, развития в химии возникла, выкристаллизовалась не сразу. Первоначально она расплывалась, растворялась в общих представлениях об изменениях, превращениях веществ». До сих пор химию часто рассматривают как науку о составе, строении и свойствах химических соединений. «Химию можно определить как науку о веществах - об их строении, свойствах и реакциях, в результате которых одни вещества превращаются в другие», - считают Л. Поллинг и П. Поллинг. По мнению Ю.А. Жданова, в настоящее время» ее можно назвать наукой об атомно-молекулярной истории природных и искусственных тел. Эта история включает в себя космический круговорот веществ на Земле и в ее оболочках, на иных планетах, в межзвездной среде, где условия допускают существование молекулярных структур. Но в бесконечных циклах и круговоротах мы фиксируем вполне определенное направление, которое состоит в прогрессивной эволюции химической формы движения».

Идея перехода химического знания к эволюционной парадигме в своем наиболее абстрактном аспекте связана с общефилософской концепцией развитии как бесконечного восхождения от низшего к высшему, роста богатства содержания предметов и явлений. Эта интерпретация учения о развитии основана на большом ансамбле фактов из всех областей научного знания - физики, химии, биологии, наук об обществе. Факты показывают, например, что в известной нам части Вселенной действует ярко выраженная тенденция материальных объектов к усложнению, доминирующая над тенденциями деградации и распада. По подсчетам Г. Кастлера и Л. Блюменфельда, в случае равенства вероятности процессов упрощения и усложнения материи вероятность возникновения жизни из аминокислот, пиримидинов, пуринов, полифосфатов, сахаров и т.д. за 2 на 10 в 9-й степени лет развития Земли оказалась бы равной 10 в минус 255-й степени или даже 10 в минус 800-й, что делает это событие, по существу, невозможным. С точки зрения уровня квантово-механических процессов вероятность появления жизни оказывается практически равной нулю. Таким образом, направленность процесса развития материи в целом от низшего к высшему, от простого к сложному должна быть признана объективной закономерностью, изучение которой становится одной из главных задач научного знания на достаточно высокой ступени его развития. Именно такая ступень достигнута в настоящее время химической наукой.

Существует целый рад подходов к раскрытию механизмов развитии химического вещества. Так, Н.А. Будрейко высказывает соображения, согласно которым последовательность качественных и количественных изменений в гомологических рядах органических соединений (предельных углеводородов, спиртов, кислот и т.д.) уже выражает процесс развития веществ этих классов. Однако более детальное рассмотрение природы этих процессов показывает, что явления гомологии нельзя принимать за точную и репрезентативную модель химической эволюции. Количественное прибавление атомов в органических молекулах не является, строго говоря, реальным развитием, так как прогрессивная эволюция вещества не идет, например, от муравьиной кислоты к мелиссиновой. «Отдельные вещества данного класса гомологов (например, муравьиная, уксусная, пропионовая и т.д. кислоты) несомненно представляют собой внутреннее единство, но между ними не существует генетической связи, связи происхождения. Конечно, можно, скажем, получить из одной кислоты другую, но эти переходы множественны, произвольны и не заключают в себе какой-то внутренней линии развития». Значительным эволюционным содержанием обладает периодический закон Д.И. Менделеева. Однако это эволюционное содержание присутствует в нем в скрытом, имплицитном виде, так как периодичность в повторении свойств элементов сама по себе еще не является прямым проявлением прогрессивного развития (которое вовсе не направлено примитивным образом от водорода к трансурановым элементам). В современной химии начинают формулироваться также другие законы, более прямо и непосредственно описывающие процесс развития - например, закон возрастания абсолютной каталитической активности в теории саморазвития открытых каталитических систем А.П. Руденко, о которой пойдет речь ниже.

Перспективный путь исследования процессов химической эволюции основывается на анализе реакционной способности химических веществ как важнейшего проявления природы химического объекта.

Реакционная способность химических элементов (то есть их способность вступать в реакции с другими веществами) включает в себя две стороны: количественную и качественную. Количественная сторона реакционной способности - это легкость и быстрота образования связей, а также число атомов, которые может интегрировать данный элемент. Качественная сторона выражается в многообразии различных химических элементов, с которыми может вступать в реакции данный элемент, и многообразие образуемых ими соединений. Реакционная способность одного и того же элемента может оцениваться по-разному в зависимости от того, с какой точки зрения - качественной или количественной - мы будем подходить к ней. Так, с количественной точки зрения наибольшей реакционной способностью обладает фтор: он легко и быстро вступает в реакции со множеством веществ, является, например, единственным элементом, который окисляет кислород. Почти такой же активностью обладают другие галогены, все они в количественном плане намного активнее, чем элементы-органогены. Однако соединения, которые образуют галогены, в большинстве своем оказываются низкомолекулярными и обладают слабой реакционной способностью, которая ограничивает возможности дальнейших превращений. Элементы-органогены, наоборот, образуют огромное количество высокомолекулярных и очень активных соединений. Это объясняется прежде всего природой атомов углерода, их уникальной способностью образовывать сложные разветвленные цепи, обладать разными степенями окисления в составе одной и той же молекулы. Благодаря этому они могут создавать чрезвычайно сложные органические вещества. Следовательно, с качественной стороны углерод превосходит по реакционной способности все остальные химические элементы.

Качественная сторона реакционной способности выражается не только в непосредственно получаемых продуктах, но и во всем наборе отдаленных, конечных результатов реакции. В оценке реакционной способности химических веществ необходимо, таким образом, учитывать весь набор возможностей дальнейших превращений, которым они располагают. Рассматриваемая в этом аспекте реакционная способность выступает как показатель возможностей дальнейшего развития, связанного с тем или иным химическим элементом (соединением), как его эволюционный потенциал, или потенциал развития. По своему эволюционному потенциалу реакционная способность элементов-органогенов намного превосходит реакционные способности всех других элементов. Только соединения углерода, имеющие наибольший эволюционный потенциал, способны вывести химическую форму материи за ее собственные пределы и стать основой для возникновения жизни. Главный «соперник» углерода - кремний, которому иногда приписывают гипотетическую способность создавать химическую структуру для «кремниевой жизни» во Вселенной, не может образовать стабильного аналога даже простейшей уксусной кислоты. Возможность возникновения на основе кремния веществ, сопоставимых по сложности с белками и нуклеиновыми кислотами, представляется в современной химии скорее фантастической, чем реальной.

Понятие эволюционного потенциала служит конкретизацией, дальнейшим углублением понятия реакционной способности под углом зрения теории развития. Эволюционный потенциал химического элемента или соединения - это внутренняя, глубинная сторона его реакционной способности, характеризующая фонд возможностей дальнейшего изменения и развития. Это понятие аналогично понятиям эволюционного потенциала в физических, биологических и социальных науках. В процессах изменения любой формы материи сокращение эволюционного потенциала свидетельствует о том, что данное направление развития является не основным, магистральным, а тупиковым. Так, в химии затухание эволюционного потенциала наблюдается в гомологических радах, высшие члены которых (стеарин, воск, парафин) становятся чрезвычайно похожими друг на друга по химической инертности. Гомологический ряд с его строгой периодичностью ведет, по выражению Ю.А. Жданова, в «химический тупик». Наиболее эволюционно перспективными оказываются не гигантские монотонные цепи, а реакции другого рода, происходящие в коллоидных растворах и каталитических системах, к которым мы вернемся ниже.

В химии ярко проявляется одна из общих закономерностей материального мира - неравномерность распределения интенсивности процесса развития в пространстве и во времени. Преобладание прогрессивного направления развития в живой природе не означает, что все биологические виды во все эпохи эволюционируют с одинаковой интенсивностью. Идея общественного прогресса также не подразумевает, что все человеческие индивиды и все социальные структуры постоянно находятся в состоянии прогрессивного развития. Аналогичным образом современная химия обнаруживает в природе два существенно различных типа реакций. Первый из них не включает в себя в непосредственном виде процессы эволюции веществ, второй, наоборот, закладывает основы для эволюционных изменений.

Первая группа реакций характеризуется коренным изменением природы реагирующей молекулы, ее трансформацией в совершенно новое состояние. Гегель называл подобные процессы движением от «одного» к «другому» - старое качество здесь просто теряется, а не аккумулируется, не «снимается». Такие реакции типичны для неорганических веществ (кислота и щелочь превращаются в соль, кислород и водород образуют воду), но они встречаются и в органической химии. В то же время среди органических соединений становятся более распространенными процессы, при которых молекула не исчезает полностью, а лишь модифицируется, сохраняя некоторые черты исходного типа. Это встречается при реакциях замещения одного атома в молекуле на другой, при таутомерных перегруппировках, при рацемизации оптически активных соединений (рацемизация - возникновение такой смеси изомеров оптически активного вещества, которая теряет оптическую активность). Фактически в этих случаях начинает формироваться черта, получившая полное развитие позже, в биологической форме материи - возникает устойчивая индивидуальность, способная сохранить себя в ходе химических превращений. Особенно важно то, что органические молекулы под внешним воздействием могут вообще химически не изменяться, а лишь переходить в другое состояние в результате перераспределения энергии, возбуждения, поворотов отдельных групп, обратимой миграции некоторых атомов, образования временных межатомных связей и т.п.

Таким образом, химический индивид приобретает способность изменить свою природу, сохранив себя. На данном этапе развития материи становится хорошо заметен диалектический процесс отрицания отрицания. Слабые и эфемерные физические силы, проявляющие себя при взаимодействии частиц и лишь слегка модифицирующие молекулу при сохранении ее химической структуры, накапливаются в макромолекулах и их комплексах. Эти силы формируют специфическую структуру живого, включающую фермент-субстратные агрегаты, межмолекулярные образования нуклеопротеидов, гликолепидов, комплементарные соответствия в двойной спирали ДНК, взаимодействия ДНК, РНК и белков. Все эти слабые физические взаимодействия определяются водородными связями, полярными, диполь-дипольными и вандерваальсовыми силами, которые предваряют химический процесс, готовят его, но еще не исчерпывают.

химия естествознание эволюционный материя

По мнению большинства ученых (в первую очередь астрономов и геологов), Земля сформировалась как небесное тело около 5 млрд лет т.н. путем конденсации частиц вращавшегося вокруг Солнца газопылевого облака.

Под влиянием сил сжатия частицы, из которых формируется Земля, выделяют огромное количество тепла. В недрах Земли начинаются термоядерные реакции. В результате Земля сильно разогревается. Таким образом, 5 млрд лет т.н. Земля представляла собой несущийся в космическом пространстве раскаленный шар, температура поверхности которою достигала 4000-8000°С (рис. 2.4.1.1).

Постепенно, за счет излучения тепловой энергии в космическое пространство, Земля начинает остывать. Около 4 млрд лет т.н. Земля остывает настолько, что на ее поверхности формируется твердая кора; одновременно из ее недр вырываются легкие, газообразные вещества, поднимающиеся вверх и формирующие первичную атмосферу. По составу первичная атмосфера существенно отличалась от современной. Свободный кислород в атмосфере древней Земли, по-видимому, отсутствовал, а в ее состав входили вещества в восстановленном состоянии, такие, как водород (Н 2), метан (СН 4), аммиак (NH 3), пары воды (Н 2 О), а возможно, также азот (N 2), окись и двуокись углерода (СО и С0 2).

Восстановительный характер первичной атмосферы Земли чрезвычайно важен для зарождения жизни, поскольку вещества в восстановленном состоянии обладают высокой реакционной способностью и в определенных условиях способны взаимодействовать друг с другом, образуя органические молекулы. Отсутствие в атмосфере первичной Земли свободного кислорода (практически весь кислород Земли был связан в виде окислов) также является важной предпосылкой возникновения жизни, поскольку кислород легко окисляет и тем самым разрушает органические соединения. Поэтому при наличии в атмосфере свободного кислорода накопление на древней Земле значительного количества органических веществ было бы невозможно.

Около 5 млрд лет т.п. - возникновение Земли как небесного тела; температура поверхности - 4000-8000°С

Около 4 млрд лет т.н. - формирование земной коры и первичной атмосферы

При температуре 1000°С - в первичной атмосфере начинается синтез простых органических молекул

Энергию для синтеза дают:

Температура первичной атмосферы ниже 100°С - формирование первичного океана -

Синтез сложных органических молекул - биополимеров из простых органических молекул:

простые органические молекулы - мономеры

сложные органические молекулы - биополимеры

Рис. 2.1. Основные этапы химической эволюции

Когда температура первичной атмосферы достигает 1000°С, в ней начинается синтез простых органических молекул, таких, как аминокислоты, нуклеотиды, жирные кислоты, простые сахара, многоатомные спирты, органические кислоты и др. Энергию для синтеза поставляют грозовые разряды, вулканическая деятельность, жесткое космическое излучение и, наконец, ультрафиолетовое излучение Солнца, от которого Земля еще не защищена озоновым экраном, причем именно ультрафиолетовое излучение ученые считают основным источником энергии для абиогенного (т.е. проходящею без участия живых организмов) синтеза органических веществ.

Признанию и широкому распространению теории А.И. Опарина во многом способствовало то, что процессы абиогенного синтеза органических молекул легко воспроизводятся в модельных экспериментах.

Возможность синтеза органических веществ из неорганических была известна с начала 19 в. Уже в 1828 г. выдающийся немецкий химик Ф. Вёлер синтезировал органическое вещество - мочевину из неорганическою - циановокислого аммония. Однако возможность абиогенного синтеза органических веществ в условиях, близких к условиям древней Земли, была впервые показана в опыте С. Миллера.

В 1953 г. молодой американский исследователь, студент- дипломник Чикагского университета Стенли Миллер воспроизвел в стеклянной колбе с впаянными в нес электродами первичную атмосферу Земли, которая, по мнению ученых того времени, состояла из водорода метана СН 4 , аммиака NH, и паров воды Н 2 0 (рис. 2.4.1.2). Через эту газовую смесь С. Миллер в течение недели пропускал электрические разряды, имитирующие грозовые. По окончании эксперимента в колбе были обнаружены α-аминокислоты (глицин, аланин, аспарагин, глутамин), органические кислоты (янтарная, молочная, уксусная, гликоколовая), у-оксимасляная кислота и мочевина. При повторении опыта С. Миллеру удалось получить отдельные нуклеотиды и короткие полинуклеотидные цепочки из пяти-шести звеньев.

Рис. 2.2. Установка С. Миллера

В дальнейших опытах по абиогенному синтезу, проводимых различными исследователями, использовались не только электрические разряды, но и другие виды энергии, характерные для древней Земли, - космическое, ультрафиолетовое и радиоактивное излучения, высокие температуры, присущие вулканической деятельности, а также разнообразные варианты газовых смеси, имитирующих первичную атмосферу. В результате был получен практически весь спектр органических молекул, характерных для живого: аминокислоты, нуклеотиды, жироподобные вещества, простые сахара, органические кислоты.

Более того, абиогенный синтез органических молекул может происходить на Земле и в настоящее время (например, в процессе вулканической деятельности). При этом в вулканических выбросах можно обнаружить не только синильную кислоту HCN, являющуюся предшественником аминокислот и нуклеотидов, но и отдельные аминокислоты, нуклеотиды и даже такие сложные по строению органические вещества, как порфирины. Абиогенный синтез органических веществ возможен не только на Земле, но и в космическом пространстве. Простейшие аминокислоты обнаружены в составе метеоритов и комет.

Когда температура первичной атмосферы опустилась ниже 100°С, на Землю обрушились горячие дожди и появился первичный океан. С потоками дождя в первичный океан поступали абиогенно синтезированные органические вещества, что превратило его, но образному выражению английского биохимика Джона Холдейна, в разбавленный «первичный бульон». По-видимому, именно в первичном океане начинаются процессы образования из простых органических молекул - мономеров сложных органических молекул - биополимеров (см. рис. 2.4.1.1).

Однако процессы полимеризации отдельных нуклеогидов, аминокислот и Сахаров - это реакции конденсации, они протекают с отщеплением воды, следовательно, водная среда способствует не полимеризации, а, напротив, гидролизу биополимеров (т.е. разрушению их с присоединением воды).

Образование биополимеров (в частности, белков из аминокислот) могло происходить в атмосфере при температуре около 180°С, откуда они смывались в первичный океан с атмосферными осадками. Кроме того, возможно, на древней Земле аминокислоты концентрировались в пересыхающих водоемах и полимеризовались в сухом виде под действием ультрафиолетового света и тепла лавовых потоков.

Несмотря на то что вода способствует гидролизу биополимеров, в живой клетке синтез биополимеров осуществляется именно в водной среде. Этот процесс катализируют особые белки-катализаторы - ферменты, а необходимая для синтеза энергия выделяется при распаде аденозинтрифосфорной кислоты - АТФ. Возможно, синтез биополимеров в водной среде первичного океана катализировался поверхностью некоторых минералов. Экспериментально показано, что раствор аминокислоты аланина может полимеризоваться в водной среде в присутствии особого вида глинозема. При этом образуется пептид полиаланин. Реакция полимеризации аланина сопровождается распадом АТФ.

Полимеризация нуклеотидов проходит легче, чем полимеризация аминокислот. Показано, что в растворах с высокой концентрацией солей отдельные нуклеотиды самопроизвольно полимеризуются, превращаясь в нуклеиновые кислоты.

Жизнь всех современных живых существ - это процесс непрерывного взаимодействия важнейших биополимеров живой клетки - белков и нуклеиновых кислот.

Белки - это «молекулы-рабочие», «молекулы-инженеры» живой клетки. Характеризуя их роль в обмене веществ, биохимики часто используют такие образные выражения, как «белок работает», «фермент ведет реакцию».Важнейшая функция белков- каталитическая . Как известно, катализаторы - это вещества, которые ускоряют химические реакции, но сами в конечные продукты реакции не входят.Бачки-катализаторы называются ферментами. Ферменты в согни и тысячи раз ускоряют реакции обмена веществ. Обмен веществ, а значит, и жизнь без них невозможны.

Нуклеиновые кислоты - это «молекулы-компьютеры», молекулы - хранители наследственной информации. Нуклеиновые кислоты хранят информацию не обо всех веществах живой клетки, а только о белках. Достаточно воспроизвести в дочерней клетке белки, свойственные материнской клетке, чтобы они точно воссоздали все химические и структурные особенности материнской клетки, а также свойственный ей характер и темпы обмена веществ. Сами нуклеиновые кислоты также воспроизводятся благодаря каталитической активности белков.

Таким образом, тайна зарождения жизни - это тайна возникновения механизма взаимодействия белков и нуклеиновых кислот. Какими же сведениями об этом процессе располагает современная наука? Какие молекулы явились первичной основой жизни - белки или нуклеиновые кислоты?

Ученые полагают, что несмотря на ключевую роль белков в обмене веществ современных живых организмов, первыми «живыми» молекулами были не белки, а нуклеиновые кислоты, а именно рибонуклеиновые кислоты (РНК).

В 1982 г. американский биохимик Томас Чек открыл автокаталитические свойства РНК. Он экспериментально показал, что в среде, содержащей в высокой концентрации минеральные соли, рибонуклеотиды спонтанно (самопроизвольно) полимеризуются, образуя полинуклеотиды - молекулы РНК. На исходных поли- нуклеотидных цепях РНК, как на матрице, путем спаривания комплементарных азотистых оснований образуются РНК-ко- пии. Реакция матричного копирования РНК катализируется исходной молекулой РНК и не требует участия ферментов либо других белков.

Дальнейшие события достаточно хорошо объясняются процессом, который можно было бы назвать «естественным отбором» на уровне молекул. При самокопировании (самосборке) молекул РНК неизбежно возникают неточности, ошибки. Содержащие ошибки копии РНК снова копируются. При повторном копировании вновь могут возникнуть ошибки. В результате популяция молекул РНК на определенном участке первичного океана будет неоднородна.

Поскольку параллельно с процессами синтеза идут и процессы распада РНК, в реакционной среде будут накапливаться молекулы, обладающие либо большей стабильностью, либо лучшими автокаталитическими свойствами (т.е. молекулы, которые быстрее себя копируют, быстрее «размножаются»).

На некоторых молекулах РНК, как на матрице, может происходить самосборка небольших белковых фрагментов - пептидов. Вокруг молекулы РНК образуется белковый «чехол».

Наряду с автокаталитическими функциями Томас Чек обнаружил у молекул РНК и явление самосплайсинга. В результате самосплайсинга участки РНК, не защищенные пептидами, самопроизвольно удаляются из РНК (они как бы «вырезаются» и «выбрасываются»), а оставшиеся участки РНК, кодирующие белковые фрагменты, «срастаются», т.е. самопроизвольно объединяются в единую молекулу. Эта новая молекула РНК уже будет кодировать большой сложный белок (рис. 2.4.1.3).

По-видимому, первоначально белковые чехлы выполняли в первую очередь, защитную функцию, предохраняя РНК от разрушения и повышая тем самым ее стабильность в растворе (такова функция белковых чехлов и у простейших современных вирусов).

Очевидно, что на определенном этапе биохимической эволюции преимущество получили молекулы РНК, кодирующие не только защитные белки, но и белки-катализаторы (ферменты), резко ускоряющие скорость копирования РНК. По-видимому, именно таким образом и возник процесс взаимодействия белков и нуклеиновых кислот, который мы в настоящее время называем жизнью.

В процессе дальнейшего развития, благодаря появлению белка с функциями фермента - обратной транскриптазы, на одно- цепочечных молекулах РНК стали синтезироваться состоящие из двух цепей молекулы дезоксирибонуклеиновой кислоты (ДНК). Отсутствие у дезоксирибозы ОН-группы в 2" положении делает молекулы ДНК более стабильными по отношению к гидролитическому расщеплению в слабощелочных растворах, а именно слабощелочной была реакция среды в первичных водоемах (эта реакция среды сохранилась и в цитоплазме современных клеток).

Где же происходило развитие сложного процесса взаимодействия белков и нуклеиновых кислот? По теории А.И. Опарина, местом зарождения жизни стали так называемые коацерватные капли.

Рис. 2.3.Гипотеза возникновения взаимодействия белков и нуклеиновых кислот:

а) в процессе самокопирования РНК накапливаются ошибки (1 - нуклеотиды, соответствующие исходной РНК; 2 - нуклеотиды, не соответствующие исходной РНК, - ошибки в копировании); б) на часть молекулы РНК за счет ее физико-химических свойств «налипают» аминокислоты (3 - молекула РНК; 4 - аминокислоты), которые, взаимодействуя друг с другом, превращаются в короткие белковые молекулы - пептиды.

В результате свойственного молекулам РНК самосплайсинга незащищенные пептидами участки молекулы РНК разрушаются, а оставшиеся «срастаются» в единую молекулу, кодирующую крупный белок.

В результате возникает молекула РНК, покрытая белковым чехлом (сходное строение имеют и наиболее примитивные современные вирусы, например вирус табачной мозаики)

Явление коацервации состоит в том, что в некоторых условиях (например, в присутствии электролитов) высокомолекулярные вещества отделяются от раствора, но не в форме осадка, а в виде более кон центрирован но го раствора - коацервата. При встряхивании коацерват распадается на отдельные мелкие капельки. В воде такие капли покрываются стабилизирующей их гидратной оболочкой (оболочкой из молекул воды) - рис. 2.4.1.4.

Коацерватные капли обладают некоторым подобием обмена веществ: иод воздействием чисто физико-химических сил они могут избирательно впитывать из раствора некоторые вещества и выделять в окружающую среду продукты их распада. За счет избирательного концентрирования веществ из окружающей среды они могут расти, а но достижении определенного размера начинают «размножаться», отпочковывая маленькие капельки, которые, в свою очередь, могут расти и «почковаться».

Возникшие в результате концентрирования белковых растворов коацерватные капли в процессе перемешивания под действием волн и ветра могут покрываться оболочкой из липи- дов: одинарной, напоминающей мицеллы мыла (при однократном отрыве капли от поверхности воды, покрытой липидным слоем), либо двойной, напоминающей клеточную мембрану (при повторном падении капли, покрытой однослойной липидной мембраной, на липидную пленку, покрывающую поверхность водоема - рис. 2.4.1.4).

Процессы возникновения коацерватных капель, их роста и «почкования», а также «одевания» их мембраной из двойного липидного слоя легко моделируются в лабораторных условиях.

Для коацерватных капель также существует процесс «естественного отбора», при котором в растворе сохраняются наиболее стабильные капли.

Несмотря на внешнее сходство коацерватных капель с живыми клетками, у коацерватных капель отсутствует главный признак живого - способность к точному самовоспроизведению, самокопированию. Очевидно, предшественниками живых клеток явились такие коацерватные капли, в состав которых вошли комплексы молекул-репликаторов (РНК или ДНК) и кодируемых ими белков. Возможно, комплексы РНК-белок длительное время существовали вне коацерватных капель в виде так называемого «свободноживущего гена», а возможно, их формирование проходило непосредственно внутри некоторых коацерватных капель.

Рис 2.4.Возможный путь перехода от коацерватных капель к примитивным клешам:

а) образование коацсрвата; 6) стабилизация коацерватных капель в водном растворе; в) - формирование вокруг капли двойного липидного слоя, похожего на клеточную мембрану: 1 - коацерватная капля; 2 - мономолекулярный слой липида на поверхности водоема; 3 - формирование вокруг капли одинарного липидного слоя; 4 - формирование вокруг капли двойного липидного слоя, похожего на клеточную мембрану; г) - коацерватная капля, окруженная двойным липидным слоем, с вошедшим в ее состав белково-нуклеотидным комплексом - прообраз первой живой клетки

Исключительно сложный, не до конца понятный современной науке процесс возникновения жизни на Земле прошел с исторической точки зрения чрезвычайно быстро. Уже 3,5 млрд лет т.н. химическая эволюция завершилась появлением первых живых клеток и началась биологическая эволюция.

Химическая эволюция.
Химическая эволюция: начальные этапы.

Центральные части Солнца и других звезд почти не имеют в своем составе настоящих химических элементов и образованы в основном из плазмы. Плазма - полностью ионизированный газ, состоящий из хаотически движущихся положительно заряженных (атомные ядра) и отрицательно заряженных (электроны) частиц.
Строение вещества звезд определяется степенью ионизации (процентом вещества, находящегося в состоянии плазмы). В центральной части Солнца температура составляет от 3 до 20 млн. градусов. При этой температуре степень ионизации достигает 100%, т.е. все вещества находятся в состоянии плазмы. На глубине, равной 0,1 радиуса Солнца, температура снижается до 400 000* С, а на поверхности Солнца температура падает до 5500* С. При этом степень ионизации снижается до 0,01%, т.е. 99,99% веществ на поверхности Солнца находится в виде атомов, имеющих электронные оболочки.
Спектральными анализами на поверхности Солнца обнаружено около 60 химических элементов, среди которых преобладают водород и гелий. Это объясняется тем, что другие элементы с более высокой атомной массой и более сложной структурой атомного ядра и электронной оболочки не могут долго существовать при высокой температуре. Количество атомов водорода в солнечной атмосфере в 4-5 раз больше количества атомов гелия; количество атомов всех других элементов в 1000 раз меньше количества водорода.
В глубинах Солнца и звезд, в плазме происходит образование сложных ядер из простейших вследствие захвата протонов и нейтронов. Образование ядра гелия из водорода идет в три этапа. Из ядра водорода (протона) и нейтрона образуется ядро тяжелого водорода (дейтерия - D) - дейтрон. При соединении дейтрона с еще одним протоном образуется ядро легкого изотопа гелия - Не|. В результате слияния двух ядер легкого гелия образуется ядро обычного, тяжелого гелия - Не2 и высвобождается два протона.
В ходе термоядерных реакций создаются ядра новых элементов. При соединении трех ядер гелия возникает ядро изотопа углерода.
В результате присоединения к ядру углерода других частиц гелия возникают изотопы кислорода, неона, магния и других элементов. Таким образом, возникновение атомов химических элементов - начальный этап неорганической эволюции. Водород, углерод, кислород, азот, фосфор (так называемые биогенные элементы) широко распространены в космосе и имели большую возможность реагировать между собой с образованием простейших неорганических соединений - следующий этап неорганической эволюции. Этому способствовало наличие энергии в космосе в виде электромагнитного излучения и тепла, испускаемого звездами. Преобладание водорода, кислорода, азота и фосфора в живых системах не случайно: водород - хороший восстановитель, легко образует с кислородом и азотом водородные связи, имеющие большое значение в образовании биологических структур и для процессов жизнедеятельности. Кислород обладает большой окислительной активностью, а для фосфора характерно образование макроэргических связей, в которых запасается энергия при химических реакциях.
Третий этап химической эволюции - образование простейших органических соединений - связан со специфической валентностью углерода - главного носителя органической жизни, его способностью к соединению почти со всеми элементами, к образованию цепей и циклов, с его каталитической активностью и другими свойствами. Простейшие органические молекулы широко распространены в межзвездной среде.

Первый этап химической эволюции на Земле.
Химическая эволюция - это совокупность процессов, протекавших в Космосе и на ранних этапах существования Земли, приведших к возникновению жизни. На первом этапе образовались литосфера, гидросфера, атмосфера. Литосфера возникла вследствие вулканизма. Ежегодно вулканы выбрасывают на поверхность Земли около 1 км. За время существования Земли, при нынешней активности вулканов, было выброшено такое количество лавы, которой достаточно для образования коры Земли.
Гидросфера также создана вулканами: 3 % массы лавы составляет водяной пар. Пар конденсировался. Это привело к появлению осадков и Первичного океана. Атмосфера образовалась при дегазации лав. Вначале Земля имела первичную атмосферу. Но масса юной Земли оказалась недостаточной для удержания газов, и они улетучивались. Земля увеличила свою массу за счет космической пыли и метеоритов: на Землю ежегодно выпадает 107 кг пыли. К тому же Земля, проходя через пылевое облако, могла получать с космической пылью 10" т органического материала. Вторичная атмосфера возникла тоже за счет дегазации лав и состояла из СО, СОз, Нз, НзО, N, МНз. Кислород появился в атмосфере благодаря фотолизу - разложению паров воды в верхних слоях атмосферы солнечными лучами. Позже обогащение атмосферы кислородом шло за счет фотосинтеза. Два с половиной миллиарда лет назад исчезли золотоураносные конгломераты, которые формируются только в отсутствии кислорода. В тот же период появляются красноцветы, образующиеся только при наличии кислорода.

Второй этап химической эволюции на Земле.
На этом этапе происходило образование низкомолекулярных органических соединений (аминокислот, спиртов, углеводов, органических кислот). Жизнь на Земле основана на углеродистых соединениях. Почему именно углерод стал основой жизни? Во-первых, потому, что углерод образует соединения в виде крупных молекулярных цепочек. Во-вторых, углеродистые соединения взаимодействуют медленно. В-третьих, углерод образует сложные соединения с особой структурой, существенной для протекания важнейших жизненных процессов.
Химическая эволюция началась задолго до возникновения Земли - она началась в Космосе. В межзвездном пространстве обнаружено более 50 органических соединений. В Космосе обычен формальдегид, окись углерода, вода, аммиак, цианистый водород. Эти вещества, как показали эксперименты, могут быть предшественниками аминокислот и других органических соединений. Во внеземном пространстве обнаружены углеводороды, альдегиды, эфиры, аминокислоты, нуклеотиды, ароматические соединения. Обнаружено вещество, имеющее в своем составе 18 атомов углерода. Синтез примитивных углеводородов, начавшийся в Космосе, продолжался во время формирования Солнечной системы и Земли.
Предположения о процессах второго этапа химической эволюции имеют экспериментальное подтверждение. В 1850 г. немецкий химик А. Штеккер осуществил химический синтез аминокислот из аммиака, альдегидов, синильной кислоты. В 1861 г. А. М. Бутлеров, нагревая формальдегид в крепком щелочном растворе, получил смесь Сахаров. Д. И. Менделеев получал углеводы, подвергая карбиды действию водяного пара. Студент Чикагского университета С. Л. Миллер в 1953 г. для дипломной работы, выполненной под руководством С. Фокса, собрал специальный аппарат для проверки возможности абиогенетического синтеза органических соединений. В этом герметическом приборе в течение недели по замкнутой схеме циркулировала смесь газов, которые, по общему мнению, наиболее вероятно содержались в ранней атмосфере Земли: СН4, Н, NH. Кипящая вода - источник водяного пара - и холодильник поддерживали циркуляцию газовой смеси. В приборе непрерывно пропускали искры при напряжении 60 тыс. вольт. После этого воду подвергли хроматографическому и химическому анализу. Было обнаружено 6 аминокислот (глицин, аланин, аспаргиновая и глутаминовая кислоты и др.), мочевину, молочную, янтарную, уксусную кислоты. Всего было обнаружено 11 органических кислот.
В том, что абиогенетический синтез органики возможен, убеждает такой факт: одно извержение вулкана в настоящее время сопровождается выбросом до 15 т органического вещества. К тому же Земля, проходя через пылевое облако, могла получать с космической пылью 108 т органического материала. Все это, предположительно, могло создать тот "бульон", о котором писали А. Опарин и Дж. Холдейн.

Начальные этапы биологической эволюции.

Образование первичных клеточных организмов положило начало биологической эволюции. Считается, что отбор коацерватов и пограничный этап химической и биологической эволюции продолжались около 750 млн лет. В конце этого периода появились первые примитивные безъядерные клетки - прокариоты. Первые живые организмы - гетеротрофы - использовали в качестве источника энергии (пищи) органические соединения, растворенные в водах первичного океана. Поскольку в атмосфере Земли не было свободного кислорода, гетеротрофы имели анаэробный (бескислородный) тип обмена веществ, эффективность которого невысока. Увеличение количества гетеротрофов привело к истощению вод первичного океана, где оставалось все меньше готовых органических веществ, которые можно было использовать для питания.
В более выгодном положении оказались организмы, которые развили способность использовать энергию солнечного излучения для синтеза органических веществ из неорганических - фотосинтеза. Таким образом, появился принципиально новый источник питания. Например, современные фотосинтезирующие пурпурные бактерии благодаря солнечному излучению окисляют сероводород до сульфатов. Высвобождающийся в результате реакции окисления водород идет на восстановление диоксида углерода до углеводов с образованием воды. Использование органических соединений в качестве источника (донора) водорода привело к появлению автотрофных организмов (способных синтезировать из неорганических веществ все необходимые для жизни органические вещества).
Следующий шаг эволюции связан с развитием у фотосинтезирующих организмов способности использовать воду в качестве источника водорода для синтеза органических молекул. Усвоение углекислого газа такими организмами сопровождалось выделением кислорода и включением углерода в органические соединения. Так в атмосфере Земли начал накапливаться кислород. Первыми фотосинтезирующими организмами, выделяющими в атмосферу кислород, были цианобактерии (цианеи).
Переход от первичной атмосферы к среде, содержащей кислород, представляет собой важнейшее событие как в эволюции живых существ, так и в преобразовании минералов. Во - пеpвых, кислород, выделяющийся в атмосферу, в верхних ее слоях под действием мощного ультрафиолетового излучения Солнца превращается в активный озон (О3), который способен поглощать большую часть жестких коротковолновых ультрафиолетовых лучей, разрушительно действующих на сложные органические соединения. Во-вторых, в присутствии свободного кислорода возможен кислородный тип обмена веществ, энергетически более выгодный. Образование свободного кислорода вызвало к жизни многочисленные новые формы аэробных живых организмов и более широкое использование ими ресурсов окружающей среды.
В результате взаимополезного симбиоза различных прокариотических (не обладающих оформленным клеточным ядром) клеток возникли ядерные, или эукариотические, организмы (эукариоты). Основой симбиоза была, вероятно, гетеротрофная амебоподобная клетка. Питанием для нее служили более мелкие клетки и, в частности, дышащие кислородом аэробные бактерии, способные функционировать и внутри клетки-хозяина, производя энергию. Те крупные амебовидные клетки, в теле которых аэробные бактерии оставались невредимыми, оказались в более выгодном положении, чем клетки, получавшие энергию анаэробным путем - брожением. В дальнейшем бактерии-симбионты превратились в митохондрии (органеллы клеток, где протекают реакции, обеспечивающие клетки энергией). Когда к поверхности клетки-хозяина прикрепилась вторая группа симбионтов - жгутикоподобных бактерий, сходных с современными спирохетами, подвижность и способность к нахождению пищи такого организма резко возросли. Так возникли примитивные животные клетки - предшественники нынешних жгутиковых простейших.
Образовавшиеся подвижные эукариоты путем симбиоза с фотосинтезирующими (возможно, цианобактериями) организмами дали водоросль, или растение, причем строение пигментного комплекса у фотосинтезирующих анаэробных бактерий сходно с пигментами зеленых растений. Такое сходство указывает на возможность эволюционного преобразования фотосинтезирующего аппарата анаэробных бактерий в аналогичный аппарат зеленых растений.
Изложенную гипотезу о возникновении эукариотических клеток через ряд последовательных симбиозов приняли многие современные ученые, поскольку она хорошо обоснованна. Во-первых, одноклеточные водоросли и сейчас легко вступают в союз с животными - эукариотами; например, в теле инфузории туфельки обитает водоросль хлорелла. Во-вторых, некоторые органоиды клетки - митохондрии и пластиды - по строению ДНК очень похожи на прокариотические клетки-бактерии и цианобактерии.
Возможности эукариот по использованию среды существенно выше, чем у прокариот, поскольку они имеют диплоидный (двойной) набор генов. У прокариот любая мутация сразу проявляется в виде признака. Если мутация полезна, организм продолжает существовать, если вредна - он погибает, т.е. прокариоты непрерывно приспосабливаются к изменениям окружающей среды, но лишены возможности формировать крупные структурные изменения. Появление двойного набора генов у эукариот сделало возможным накопление непроявляющихся фенотипических мутаций и, следовательно, формирование резерва наследственной изменчивости - основы эволюционных преобразований.
Возможности одноклеточных в освоении среды обитания были ограничены, так как дыхание и питание простейших осуществляются через поверхность тела. При увеличении размеров клетки одноклеточного организма его поверхность возрастает по квадратичному закону, а объем - по кубическому, поэтому биологическая мембрана, окружающая клетку, не могла обеспечивать кислородом слишком большой организм. Иной эволюционный путь осуществился позже, около 2,6 млрд лет назад, когда появились многоклеточные организмы, эволюционные возможности которых значительно шире.
Первая гипотеза о происхождении многоклеточных организмов принадлежит Э. Геккелю (вторая половина XIX в.). При ее построении он исходил из исследований эмбрионального развития ланцетника (род животных класса бесчерепных), проведенных А.О. Ковалевским и другими зоологами. Геккель полагал, что начальная стадия развития зародыша (стадия зиготы) соответствует одноклеточным предкам, а стадия развития зародыша многоклеточных животных в процессе бластуляции (заключительной фазе периода дробления яйца) - шарообразной колонии жгутиковых. В дальнейшем, согласно этой гипотезе, произошло впячивание (инвагинация) одной из сторон шарообразной колонии и образовался гипотетический двухслойный организм, названный Геккелем гастреей. Теория Геккеля сыграла важную роль в истории науки, способствуя утверждению монофилетических (т.е. из одного корня) представлений о происхождении многоклеточных.
Основу современных представлений о возникновении многоклеточных организмов составляет гипотеза фагоцителлы И.И. Мечникова. По его представлениям, многоклеточные произошли от колониальных простейших - жгутиковых. Пример такой организации - ныне существующие колониальные жгутиковые типа вольвокс. Среди клеток колонии выделяются движущиеся, снабженные жгутиками, фагоцитирующие добычу и уносящие ее внутрь колонии, и половые, функцией которых является размножение. Так колония превратилась в примитивный, но целостный многоклеточный организм. О справедливости гипотезы фагоцителлы говорит строение примитивного многоклеточного организма - трихоплакса, который по строению соответствует гипотетической фагоцителле и поэтому должен быть выделен в особый тип животных - фагоцителлоподобных, заполняющих брешь между многоклеточными и одноклеточными организмами.
Таким образом, в настоящее время большинство исследователей в области естествознания признает, что возникновение жизни на Земле связано с длительным процессом химической эволюции. Формирование структуры, отграничивающей организм от окружающей среды, - мембраны с присущими ей свойствами способствовало появлению живых организмов и ознаменовало начало биологической эволюции. Как простейшие живые организмы, возникшие около 3 млрд лет назад, так и устроенные более сложно в основе своей структурной организации имеют клетку.

Основные направления биологической эволюции.
В протерозойской эре в морях обитало множество водорослей. Начальные зве
и т.д.................

Теория химической эволюции или как зарождалась жизнь

Теория химической эволюции - современная теория про-исхождения жизни - опирается на идею самозарожде-ния. В основе ее лежит не внезапное возникновение живых существ на Земле, а образование хи-мических соединений и систем, которые составляют живую материю. Она рассматривает химию древнейшей Земли, прежде всего химические реакции, протекавшие в прими-тивной атмосфере и в поверхностном слое воды, где, по всей вероятности, концентрировались легкие элементы, составля-ющие основу живой материи, и поглощалось огромное количество солнечной энергии. Эта теория пытается от-ветить на вопрос: каким образом в ту далекую эпоху могли самопроизвольно возникнуть и сформироваться в живую систему органические соединения?

Общий подход к химической эволюции первым сфор-мулировал советский биохимик А. И. Опарин (1894-1980). В 1924 г. в СССР была опубликована его небольшая книга, посвященная этому вопросу; в 1936 г. вышло в свет ее новое, дополненное издание (в 1938 г. она была переведена на английский язык). Опарин обратил внимание на то, что современные условия на поверхности Земли препятствуют синтезу большого количества органических соединений, по-скольку свободный кислород, имеющийся в избытке в ат-мосфере, окисляет углеродные соединения до диоксида угле-рода (углекислого газа, СО 2). Кроме того, он отмечал, что в наше время любое органическое вещество, “брошенное на произвол” на земле, используется живыми организмами (подобную мысль высказывал еще Чарлз Дарвин). Однако, утверждал Опарин, на первичной Земле господствовали иные условия. Можно полагать, что в земной атмосфере того времени отсутствовал кислород, но в изобилии имелись водород и газы, содержащие водород, такие, как метан (СН 4) и аммиак (NН 3). (Подобную атмосферу, богатую водородом и бедную кислородом, называют восстанови-тельной в отличие от современной, окислительной, атмос-феры, богатой кислородом и бедной водородом.) По мне-нию Опарина, такие условия создавали прекрасные воз-можности для самопроизвольного синтеза органических сое-динений.

Обосновывая свою идею о восстановительном характере примитивной атмосферы Земли, Опарин выдвигал следую-щие аргументы:

1. Водород в изобилии присутствует в звездах

2. Углерод обнаруживается в спектрах комет и холодных звезд в составе радикалов СН и CN, а окисленный углерод проявляется редко.

3. Углеводороды, т.е. соединения углерода и водорода, встречаются в метеоритах.

4. Атмосферы Юпитера и Сатурна чрезвычайно богаты метаном и аммиаком.

Как указывал Опарин, эти четыре пункта свидетельству-ют о том, что Вселенная в целом находится в восстано-вительном состоянии. Следовательно, на первобытной Земле углерод и азот должны были находиться в таком же со-стоянии.

5. В вулканических газах содержится аммиак. Это, считал Опарин, говорит о том, что азот присутствовал в первичной атмосфере в виде аммиака.

6. Кислород, содержащийся в современной атмосфере, вырабатывается зелеными растениями в процессе фотосин-теза, и, следовательно, по своему происхождению это био-логический продукт.

На основании этих рассуждений Опарин пришел к заклю-чению, что углерод на примитивной Земле впервые появился в виде углеводородов, а азот-в виде аммиака. Далее он высказал предположение, что в ходе известных ныне хи-мических реакций на поверхности безжизненной Земли воз-никали сложные органические соединения, которые по про-шествии довольно продолжительного периода времени, по-видимому, и дали начало первым живым существам. Первые организмы, вероятно, представляли собой очень простые системы, способные лишь к репликации (делению) за счет органической среды, из которой они образовались. Выражаясь современным языком, они были “гетеротрофами”, т. е. зависели от окружающей среды, которая снабжала их органическим питанием. На противоположном конце этой шкалы находятся “автотрофы”-например, такие орга-низмы, как зеленые растения, которые сами синтезируют все необходимые органические вещества из диоксида углерода, неорганического азота и воды. Согласно теории Опарина, автотрофы появились только после того, как гетеротрофы истощили запас органических соединений в примитивном океане.

Дж. Б. С. Холдейн (1892-1964) выдвинул идею, в неко-тором отношении сходную со взглядами Опарина, которая была изложена в популярном очерке, опубликованном в 1929 г. Он предположил, что органическое вещество, син-тезированное в ходе естественных химических процессов, протекавших на предбиологической Земле, накапливалось в океане, который в конце концов достиг консистенции “го-рячего разбавленного бульона”. По мнению Холдейна, при-митивная атмосфера Земли была анаэробной (свободной от кислорода), однако он не утверждал, что для осуществления синтеза органических соединений требовались восстанови-тельные условия. Таким образом, он допускал, что углерод мог присутствовать в атмосфере в полностью окисленной форме, т. е. в виде диоксида, а не в составе метана или других углеводородов. При этом Холдейн ссылался на результаты экспериментов (не собственных), в которых доказывалась возможность образования сложных органических соедине-ний из смеси диоксида углерода, аммиака и воды под действием ультрафиолетового излучения. Однако в даль-нейшем все попытки повторить эти эксперименты оказались безуспешными.

В 1952 г. Гарольд Юри (1893-1981), занимаясь не собст-венно проблемами происхождения жизни, а эволюцией Сол-нечной системы, самостоятельно пришел к выводу, что атмосфера молодой Земли имела восстановленный характер. Подход Опарина был качественным. Проблема, которую исследовал Юри, была по своему характеру физико-хими-ческой: используя в качестве отправной точки данные о составе первичного облака космической пыли и граничные условия, определяемые известными физическими и хими-ческими свойствами Луны и планет, он ставил целью раз-работать термодинамически приемлемую историю всей Солнечной системы в целом. Юри, в частности, показал, что к завершению процесса формирования Земля имела сильно восстановленную атмосферу, так как ее основными состав-ляющими были водород и полностью восстановленные фор-мы углерода, азота и кислорода: метан, аммиак и пары воды. Гравитационное поле Земли не могло удержать легкий водород-и он постепенно улетучился в космическое про-странство. Вторичным следствием потери свободного во-дорода было постепенное окисление метана до диоксида углерода, а аммиака-до газообразного азота, которые через определенное время превратили атмосферу из восстанови-тельной в окислительную. Юри предполагал, что именно в период улетучивания водорода, когда атмосфера находилась в промежуточном окислительно-восстановительном состоя-нии, на Земле могло образоваться в больших количествах сложное органическое вещество. По его оценкам, океан, по-видимому, представлял тогда собой однопроцентный раствор органических соединений. В результате возникла жизнь в ее самой примитивной форме.

Считается, что Солнечная система образовалась из про-тосолнечной туманности-огромного облака газа и пыли. Возраст Земли, как установлено на основе ряда независимых оценок, близок к 4,5 млрд. лет. Чтобы выяснить состав первичной туманности, разумнее всего исследовать относи-тельное содержание различных химических элементов в со-временной Солнечной системе. По данным исследований основные элементы-водород и гелий-вместе составляют свыше 98% массы Солнца (99,9% его атомного состава) и фактически Солнечной системы в целом. Поскольку Солнце-обычная звезда и к этому типу относится множество звезд в других галактиках, его состав в общем характеризует распростра-ненность элементов в космическом пространстве. Современ-ные представления об эволюции звезд позволяют предпо-ложить, что водород и гелий преобладали и в “молодом” Солнце, каковым оно было 4,5 млрд. лет назад.

Четыре основных элемента Земли относятся к числу девяти наиболее распространенных на Солнце, по своему составу наша планета существенно отличается от космического пространства в целом. (То же самое можно сказать о Меркурии, Венере и Марсе; однако Юпитер, Сатурн, Уран и Нептун в этот список не попадают.) Земля состоит главным образом из железа, кислорода, кремния и магния. Очевиден дефицит всех биологически важных легких элементов (за исключением кислорода) и поразительна согласно теории Опарина-Юри, необходимы для начала химической эволюции. Учитывая дефицит легких элементов и особенно благородных газов, разумно предположить, что изначально Земля сформировалась вообще без атмосферы. За исключением гелия, все благородные газы - неон, аргон, криптон и ксенон - обладают достаточной удельной массой, чтобы их могло удержать земное тяготение. Криптон и ксенон, например, тяжелее железа. Поскольку эти элементы образуют очень мало соединений, они, по всей видимости, существовали в примитивной атмосфере Земли в виде газов и не могли улетучиться, когда планета достигла наконец своих нынешних размеров. Но поскольку на Земле их со-держится в миллионы раз меньше, чем на Солнце, естест-венно допустить, что наша планета никогда не имела ат-мосферы, по составу близкой солнечной. Земля образовалась из твердых материалов, которые содержали лишь небольшое количество поглощенного или адсорбированного газа, так что никакой атмосферы сначала не было. Элементы, вхо-дящие в состав современной атмосферы, по-видимому, поя-вились на первобытной Земле в виде твердых химических соединений; впоследствии под действием тепла, возникаю-щего при радиоактивном распаде или выделении грави-тационной энергии, сопровождающем аккрецию Земли, эти соединения разлагались с образованием газов. В процессе вулканической деятельности эти газы вырывались из земных недр, образуя примитивную атмосферу.

Высокое содержание в современной атмосфере аргона (около 1%) не противоречит предположению, что благо-родные газы первоначально отсутствовали в атмосфере. Изотоп аргона, распространенный в космическом простран-стве, имеет атомную массу 36, тогда как атомная масса аргона, образовавшегося в земной коре при радиоактивном распаде калия, равна 40. Аномально высокое содержание на Земле кислорода (по сравнению с другими легкими эле-ментами) объясняется тем, что этот элемент способен сое-диняться с множеством других элементов, образуя такие очень стабильные твердые соединения, как силикаты и кар-бонаты, которые входят в состав горных пород.

Предположения Юри о восстановительном характере первобытной атмосферы основывались на высоком содер-жании на Земле железа (35% общей массы). Он считал, что железо, из которого ныне состоит ядро Земли, первона-чально было распределено более или менее равномерно по всему ее объему. При разогреве Земли железо расплавилось и собралось в ее центре. Однако, прежде чем это произошло, железо, содержащееся в том слое планеты, который сейчас называется верхней мантией Земли, взаимодействовало с водой (она присутствовала на примитивной Земле в виде гидратированных минералов, похожих на те, что обнару-жены в некоторых метеоритах); в результате в первобытную атмосферу выделились огромные количества водорода.

Исследования, осуществляемые с начала 1950-х годов, поставили под вопрос ряд положений описанного сценария. Некоторые планетологи высказывают сомнения насчет того, что железо, сосредоточенное сейчас в земной коре, могло когда-либо равномерно распределяться по всему объему планеты. Они склоняются к мнению, что аккреция проис-ходила неравномерно и железо конденсировалось из ту-манности раньше других элементов, образующих ныне ман-тию и кору Земли. При неравномерной аккреции содержание свободного водорода в примитивной атмосфере должно было оказаться ниже, чем в случае равномерного процесса. Другие ученые отдают предпочтение аккреции, но проте-кающей таким путем, который не должен приводить к образованию восстановительной атмосферы. Короче говоря, в последние годы были проанализированы различные мо-дели образования Земли, из которых одни в большей, другие в меньшей степени согласуются с представлениями о вос-становительном характере ранней атмосферы.

Попытки восстановить события, происходившие на заре формирования Солнечной системы, неизбежно связаны со множеством неопределенностей. Промежуток времени меж-ду возникновением Земли и образованием древнейших по-род, поддающихся геологической датировке, в течение ко-торого протекали химические реакции, приведшие к появ-лению жизни, составляет 700 млн. лет. Лабораторные опыты показали, что для синтеза компонентов генетической сис-темы необходима среда восстановительного характера; поэ-тому можно сказать, что раз жизнь на Земле возникла, то это может означать следующее: либо примитивная атмосфера имела восстановительный характер, либо органические сое-динения, необходимые для зарождения жизни, откуда-то принесены на Землю. Поскольку даже сегодня метеориты приносят на Землю разнообразные органические вещества, последняя возможность не выглядит абсолютно фантасти-ческой. Однако метеориты, по-видимому, содержат далеко не все вещества, необходимые для построения генетической системы. Хотя вещества метеоритного происхождения, вероятно, внесли существенный вклад в общий фонд органи-ческих соединений на примитивной Земле, в настоящее время кажется наиболее правдоподобным, что условия на самой Земле имели восстановительный характер в такой степени, что стало возможным образование органического вещества, приведшее к возникновению жизни.

Современные биологи показали, что жизнь-это хими-ческий феномен, отличающийся от прочих химических про-цессов проявлением генетических свойств. Во всех известных живых системах носителями этих свойств служат нуклеино-вые кислоты и белки. Сходство нуклеиновых кислот, белков и работающих на их основе генетических механизмов у организмов самых различных видов практически не оставля-ет сомнений в том, что все живые существа, ныне обитающие на Земле, связаны эволюционной цепью, которая соединяет их также с существовавшими в прошлом и вымершими видами. Подобная эволюция - естественный и неизбежный результат работы генетических систем. Таким образом, несмотря на бесконечное разнообразие, все живые существа на нашей планете принадлежат к одной семье. На Земле фактически существует лишь одна форма жизни, которая могла возникнуть только однократно.

Основным элементом земной биохимии является угле-род. Химические свойства этого элемента делают его особен-но подходящим для образования такого типа больших ин-формационно богатых молекул, которые необходимы для построения генетических систем с практически неограничен-ными эволюционными возможностями. Космос также очень богат углеродом, и целый ряд данных (результаты лабора-торных экспериментов, анализов метеоритов и спектроско-пии межзвездного пространства) свидетельствует, что обра-зование органических соединений, подобных тем, которые входят в состав живой материи, достаточно легко и в широких масштабах происходит во Вселенной. Поэтому вероятно, что если жизнь существует в каком-то ином уголке Вселенной, то она также основана на химии углерода.

Биохимические процессы, основанные на химии углерода, могут протекать лишь при сочетании на планете определен-ных условий температуры и давления, а также наличия подходящего источника энергии, атмосферы и растворителя. Хотя в земной биохимии роль растворителя играет вода, возможно, хотя и не обязательно, что в биохимических процессах, происходящих на иных планетах, участвуют дру-гие растворители.

Критерии возможности зарождения жизни

1.Температура и давление

Если предположение о том, что жизнь должна быть основана на химии углерода, правильно, то можно точно установить предельные условия для любой среды, способной поддерживать жизнь. Прежде всего температура не должна превышать предела стабильности органических молекул. Определить предельную температуру нелегко, но не требуется точных цифр. Поскольку температурные эффекты и величина давления взаимозависимы, их следует рассматривать в совокупности. Приняв давление равным примерно 1 атм (как на поверхности Земли), можно оценить верхний температурный предел жизни, учитывая, что многие небольшие молекулы, из которых построена генетическая система, например аминокислоты, быстро разрушаются при температуре 200-300°С. Исходя из этого, можно заключить, что области с температурой выше 250°С необитаемы. (Из этого, однако, не следует, что жизнь определяется только аминокислотами; мы выбрали их лишь в качестве типичных представителей малых органических молекул.) Реальный температурный предел жизни почти наверняка должен быть ниже указанного, поскольку большие молекулы со сложной трехмерной структурой, в частности белки, построенные из аминокислот, как правило, более чувствительны к нагрева-нию, чем небольшие молекулы. Для жизни на поверхности Земли верхний температурный предел близок к 100°С, и некоторые виды бактерий при этих условиях могут выживать в горячих источниках. Однако подавляющее большинство организмов при такой температуре гибнет.

Может показаться странным, что верхний температурный предел жизни близок к точке кипения воды. Не обусловлено ли это совпадение именно тем обстоятельством, что жидкая вода не может существовать при температуре выше точки своего кипения (100°С на земной поверхности), а не какими-то особыми свойствами самой живой материи?

Много лет назад Томас Д. Брок, специалист по термо-фильным бактериям, высказал предположение, что жизнь может быть обнаружена везде, где существует жидкая вода, независимо от ее температуры. Чтобы поднять точку кипе-ния воды, нужно увеличить давление, как это происходит, например, в герметической кастрюле-скороварке. Усиленный подогрев заставляет воду кипеть быстрее, не меняя ее темпе-ратуры. Естественные условия, в которых жидкая вода су-ществует при температуре выше ее обычной точки кипения, обнаружены в районах подводной геотермальной активнос-ти, где перегретая вода изливается из земных недр под совместным действием атмосферного давления и давления слоя океанской воды. В 1982 г. К. О. Стеттер обнаружил на глубине до 10 м в зоне геотермальной активности бактерии, для которых оптимальная температура развития составляла 105°С. Так как давление под водой на глубине 10 м равняется 1 атм, общее давление на этой глубине достигало 2 атм. Температура кипения воды при таком давлении равна 121°С.

Действительно, измерения показали, что температура воды в этом месте составляла 103°С. Следовательно, жизнь возмож-на и при температурах выше нормальной точки кипения воды.

Очевидно, бактерии, способные существовать при темпе-ратурах около 100°С, обладают “секретом”, которого лише-ны обычные организмы. Поскольку эти термофильные фор-мы при низких температурах растут плохо либо вообще не растут, справедливо считать, что и у обычных бактерий есть собственный “секрет”. Ключевым свойством, определяю-щим возможность выживания при высоких температурах, является способность производить термостабильные клеточ-ные компоненты, особенно белки, нуклеиновые кислоты и клеточные мембраны. У белков обычных организмов при температурах около 60°С происходят быстрые и необрати-мые изменения структуры, или денатурация. В качестве примера можно привести свертывание при варке альбумина куриного яйца (яичного “белка”). Белки бактерий, обита-ющих в горячих источниках, не испытывают таких измене-ний до температуры 90°С. Нуклеиновые кислоты также подвержены тепловой денатурации. Молекула ДНК при этом разделяется на две составляющие ее нити. Обычно это происходит в интервале температур 85-100°С в зависимости от соотношения нуклеотидов в молекуле ДНК.

При денатурации разрушается трехмерная структура бел-ков (уникальная для каждого белка), которая необходима для выполнения таких его функций, как катализ. Эта струк-тура поддерживается целым набором слабых химических связей, в результате действия которых линейная последова-тельность аминокислот, формирующая первичную структу-ру белковой молекулы, укладывается в особую, характерную для данного белка конформацию. Поддерживающие трех-мерную структуру связи образуются между аминокислота-ми, расположенными в различных частях белковой молеку-лы. Мутации гена, в котором заложена информация о последовательности аминокислот, характерной для опреде-ленного белка, могут привести к изменению в составе амино-кислот, что в свою очередь часто сказывается на его термо-стабильности. Это явление открывает возможности для эволюции термостабильных белков. Структура молекул, обеспе-чивающая термостабильность нуклеиновых кислот и клеточ-ных мембран бактерий, обитающих в горячих источниках, по-видимому, также генетически обусловлена.

Поскольку повышение давления препятствует кипению воды при нормальной точке кипения, оно может предотвра-тить и некоторые повреждения биологических молекул, свя-занные с воздействиями высокой температуры. Например, давление в несколько сотен атмосфер подавляет тепловую денатурацию белков. Это объясняется тем, что денатурация вызывает раскручивание спиральной структуры белковой молекулы, сопровождающееся увеличением объема. Препят-ствуя увеличению объема, давление предотвращает денату-рацию. При гораздо более высоких величинах давления, 5000 атм и более, оно само становится причиной денатурации. Механизм этого явления, которое предполагает компрес-сионное разрушение белковой молекулы, пока не ясен. Воз-действие очень высокого давления приводит также к повы-шению термостабильности малых молекул, поскольку высо-кое давление препятствует увеличению объема, обусловлен-ному в этом случае разрывами химических связей. Напри-мер, при атмосферном давлении мочевина быстро разруша-ется при температуре 130°С, но стабильна, по крайней мере в течение часа, при 200°С и давлении 29 тыс. атм.

Молекулы, находящиеся в растворе, ведут себя совершен-но иначе. Взаимодействуя с растворителем, они часто распа-даются при высокой температуре. Общее название таких реакций - сольватация; если растворителем служит вода, то реакция называется гидролизом.

Гидролиз-это основной процесс, вследствие которого в природе разрушаются белки, нуклеиновые кислоты и многие другие сложные биологические молекулы. Гидролиз проис-ходит, например, в процессе пищеварения у животных, но он осуществляется и вне живых систем, самопроизвольно, осо-бенно при высоких температурах. Электрические поля, воз-никающие при сольволитических реакциях, приводят к уменьшению объема раствора путем электрострикции, т.е. связывания соседних молекул растворителя. Поэтому сле-дует ожидать, что высокое давление должно ускорять про-цесс сольволиза, и опыты подтверждают это.

Поскольку мы полагаем, что жизненно важные процессы могут протекать только в растворах, отсюда следует, что высокое давление не может поднять верхний температурный предел жизни, по крайней мере в таких полярных раствори-телях, как вода и аммиак. Температура около 100°С-вероят-но, закономерный предел. Как мы увидим, это исключает из рассмотрения в качестве возможных мест обитания многие планеты Солнечной системы.

2. Атмосфера

Следующее условие, необходимое для обитаемости пла-неты, - наличие атмосферы. Достаточно простые соединения легких элементов, которые, по нашим предположениям, составляют основы живой материи, как правило, летучи, т. е. в широком интервале температур находятся в газообразном состоянии. По-видимому, такие соединения обязательно вы-рабатываются в процессах обмена веществ у живых организ-мов, а также при тепловых и фотохимических воздействиях на мертвые организмы, которые сопровождаются выделе-нием газов в атмосферу. Эти газы, наиболее простыми примерами которых на Земле являются диоксид углерода (углекислый газ), пары воды и кислород, в конце концов включаются в кругооборот веществ, который происходит в живой природе. Если бы земное тяготение не могло их удерживать, то они улетучились бы в космическое простран-ство, наша планета со временем исчерпала свои “запасы” легких элементов и жизнь на ней прекратилась бы. Таким образом, если бы на каком-то космическом теле, гравита-ционное поле которого недостаточно сильно, чтобы удержи-вать атмосферу, возникла жизнь, она не могла бы долго существовать.

Высказывалось предположение, что жизнь может сущест-вовать под поверхностью таких небесных тел, как Луна, которые имеют либо очень разреженную атмосферу, либо вообще лишены ее. Подобное предположение строится на том, что газы могут быть захвачены подповерхностным слоем, который и становится естественной средой обитания живых организмов. Но поскольку любая среда обитания, возникшая под поверхностью планеты, лишена основного биологически важного источника энергии-Солнца, такое предположение лишь подменяет одну проблему другой. Жизнь нуждается в постоянном притоке как вещества, так и энергии, но если вещество участвует в кругообороте (этим обусловлена необходимость атмосферы), то энергия, соглас-но фундаментальным законам термодинамики, ведет себя иначе. Биосфера способна функционировать, покуда снабжа-ется энергией, хотя различные ее источники не равноценны. Например, Солнечная система очень богата тепловой энер-гией - тепло вырабатывается в недрах многих планет, вклю-чая Землю. Однако мы не знаем организмов, которые были бы способны использовать его как источник энергии для своих жизненных процессов. Чтобы использовать теплоту в качестве источника энергии, организм, вероятно, должен функционировать подобно тепловой машине, т. е. переносить теплоту из области высокой температуры (например, от цилиндра бензинового двигателя) в область низкой темпера-туры (к радиатору). При таком процессе часть перенесенной теплоты переходит в работу. Но чтобы к. п. д. таких тепло-вых машин был достаточно высоким, требуется высокая температура “нагревателя”, а это немедленно создает огром-ные трудности для живых систем, так как порождает мно-жество дополнительных проблем.

Ни одной из этих проблем не создает солнечный свет. Солнце - постоянный, фактически неисчерпаемый источник энергии, которая легко используется в химических процессах при любой температуре. Жизнь на нашей планете целиком зависит от солнечной энергии, поэтому естественно предпо-ложить, что нигде в другом месте Солнечной системы жизнь не могла бы развиваться без прямого или косвенного потреб-ления энергии этого вида.

Не меняет существа дела и тот факт, что некоторые бактерии способны жить в темноте, используя для питания только неорганические вещества, а как единственный источ-ник углерода - его диоксид. Такие организмы, называемые хемолитоавтотрофами (что в буквальном переводе значит: питающие себя неорганическими химическими веществами), получают энергию, необходимую для превращения диоксида углерода в органические вещества за счет окисления водоро-да, серы или других неорганических веществ. Но эти источники энергии в отличие от Солнца истощаются и после использования не могут восстанавливаться без участия сол-нечной энергии. Так, водород, важный источник энергии для некоторых хемолитоавтотрофов, образуется в анаэробных условиях (например, в болотах, на дне озер или в желудочно-кишечном тракте животных) путем разложения под действием бактерий растительного материала, который сам, конечно, образуется в процессе фотосинтеза. Хемолитоавтотрофы используют этот водород для получения из диокси-да углерода метана и веществ, необходимых для жизне-деятельности клетки. Метан поступает в атмосферу, где разлагается под действием солнечного света с образованием водорода и других продуктов. В атмосфере Земли водород содержится в концентрации 0,5 на миллион частей; почти весь он образовался из метана, выделяемого бактериями. Водород и метан выбрасываются в атмосферу также при извержениях вулканов, но в несравненно меньшем количест-ве. Другой существенный источник атмосферного водоро-да-верхние слои атмосферы, где под действием солнечного УФ-излучения пары воды разлагаются с высвобождением атомов водорода, которые улетучиваются в космическое пространство.

Многочисленным популяцим различных животных-рыб, морских моллюсков, мидий, гигантских червей и т. д., кото-рые, как было установлено, и обитают вблизи горячих источников, обнаруженных на глубине 2500 м в Тихом океа-не, иногда приписывают способность существовать незави-симо от солнечной энергии. Известно несколько таких зон: одна рядом с Галапагосским архипелагом, другая - на рас-стоянии примерно 21° к северо-западу, у берегов Мекси-ки. В глубине океана запасы пищи заведомо скудны, и открытие в 1977 г. первой такой популяции немедленно поставило вопрос об источнике их питания. Одна возмож-ность, по-видимому, заключается в использовании органи-ческого вещества, скапливающегося на дне океана,-отбро-сов, образовавшихся в результате биологической активности в поверхностном слое; они переносятся в районы геотермальной активности горизонтальными течениями, возника-ющими вследствие вертикальных выбросов горячей воды. Движение вверх перегретой воды и вызывает образование придонных горизонтальных холодных течений, направлен-ных к месту выброса. Предполагается, что таким путем здесь и скапливаются органические останки.

Другой источник питательных веществ стал известен после того, как выяснилось, что в воде термальных источников содержится сероводород (H 2 S). He исключено, что хемолитоавтотрофные бактерии находятся у начала цепи пита-ния. Как показали дальнейшие исследования, хемолитоавтотрофы действительно являются главным источником орга-нического вещества в экосистеме термальных источников.

Поскольку “топливом” для этих глубоководных сооб-ществ служит образовавшийся в глубинах Земли сероводо-род, их обычно рассматривают как живые системы, способ-ные обходиться без солнечной энергии. Однако это не совсем верно, так как кислород, используемый ими для окисления “топлива”, является продуктом фотохимических превраще-ний. На Земле имеются только два значительных источника свободного кислорода, и оба они связаны с активностью Солнца.

Океан играет важную роль в жизни глубоководной экосистемы, поскольку он создает окружающую среду для организмов из термальных источ-ников, без которой они не могли бы существовать. Океан обеспечивает их не только кислородом, но и всеми нужными питательными веществами, за исключением сероводорода. Он удаляет отходы. И он же позволяет этим организмам переселяться в новые районы, что необходимо для их выжи-вания, поскольку источники недолговечны - согласно оцен-кам, время их жизни не превышает 10 лет. Расстояние между отдельными термальными источниками в одном районе океана составляет 5-10 км.

3. Растворитель

В настоящее время принято считать, что необходимым условием жизни является также наличие растворителя того или иного типа. Многие химические реакции, протекающие в живых системах, без растворителя были бы невозможны. На Земле таким биологическим растворителем служит вода. Она представляет собой главную составляющую живых клеток и одно из самых распространенных на земной поверх-ности соединений. Ввиду того что образующие воду хими-ческие элементы широко распространены в космическом пространстве, вода, несомненно,- одно из наиболее часто встречающихся соединений во Вселенной. Но, несмотря на такое изобилие воды повсюду. Земля - единственная планета в Солнечной системе, имеющая на своей поверхности океан; это важный факт, к которому мы вернемся позже.

Вода обладает рядом особых и неожиданных свойств, благодаря которым она может служить биологическим растворителем - естественной средой обитания живых орга-низмов. Этими свойствами определяется ее главная роль в стабилизации температуры Земли. К числу таких свойств относятся: высокие температуры плавления (таяния) и кипе-ния; высокая теплоемкость; широкий диапазон температур, в пределах которого вода остается в жидком состоянии; боль-шая диэлектрическая постоянная (что очень важно для раст-ворителя); способность расширяться вблизи точки замерза-ния. Всестороннее развитие эти вопросы получили, в част-ности, в трудах Л.Дж. Гендерсона (1878-1942), профессора химии Гарвардского университета.

Современные исследования показали, что столь необыч-ные свойства воды обусловлены способностью ее молекул образовывать водородные связи между собой и с другими молекулами, содержащими атомы кислорода или азота. В действительности жидкая вода состоит из агрегатов, в кото-рых отдельные молекулы соединены вместе водородными связями. По этой причине при обсуждении вопроса о том, какие неводные растворители могли бы использоваться жи-выми системами в других мирах, особое внимание уделяется аммиаку (NН 3), который также образует водородные связи и по многим свойствам сходен с водой. Называются и другие вещества, способные к образованию водородных связей, в частности фтористоводородная кислота (HF) и цианистый водород (HCN). Однако последние два соединения-малове-роятные кандидаты на эту роль. Фтор относится к редким элементам: на один атом фтора в наблюдаемой Вселенной приходится 10000 атомов кислорода, так что трудно пред-ставить на любой планете условия, которые благоприятство-вали бы образованию океана, состоящего из HF, а не из Н 2 О. Что касается цианистого водорода (HCN), составля-ющие его элементы в космическом пространстве встречают-ся в изобилии, но это соединение термодинамически недоста-точно устойчиво. Поэтому маловероятно, чтобы оно могло в больших количествах когда-либо накапливаться на какой-то планете, хотя, как мы говорили раньше, HCN представляет собой важное (хотя и временное) промежуточное звено в предбиологическом синтезе органических веществ.

Аммиак состоит из довольно распространенных элемен-тов и, хотя он менее стабилен, чем вода, все же достаточно устойчив, чтобы его можно было рассматривать как возмож-ный биологический растворитель. При давлении в 1 атм он находится в жидком состоянии в интервале температур 78 — 33°С. Этот интервал (45°) намного уже соответству-ющего интервала для воды (100°С), но он охватывает ту область температурной шкалы, где вода не может функцио-нировать как растворитель. Рассматривая аммиак, Гендер-сон указывал, что это единственное из известных соединений, которое как биологический растворитель приближается по своим свойствам к воде. Но в конце концов ученый отказался от своего утверждения по следующим причинам. Во-первых, аммиак не может накопиться в достаточном количестве на поверхности какой-либо планеты; во-вторых, в отличие от воды он не расширяется при температуре, близкой к точке замерзания (вследствие чего вся его масса может целиком остаться в твердом, замороженном состоянии), и наконец, выбор его как растворителя исключает выгоды от использо-вания кислорода в качестве биологического реагента. Ген-дерсон не высказал определенного мнения о причинах, кото-рые помешали бы аммиаку накапливаться на поверхности планет, но тем не менее он оказался прав. Аммиак разруша-ется УФ-излучением Солнца легче, чем вода, т. е. его молеку-лы расщепляются под воздействием излучения большей длины волны, несущего меньше энергии, которое широко представлено в солнечном спектре. Образующийся в этой реакции водород улетучивается с планет (за исключением самых больших) в космическое пространство, а азот остает-ся. Вода также разрушается в атмосфере под действием солнечного излучения, но только гораздо более коротковол-нового, чем то, которое разрушает аммиак, а выделяющиеся при этом кислород (О 2) и озон (О 3) образуют экран, очень эффективно защищающий Землю от убийственного УФ-из-лучения. Таким образом происходит самоограничение фото-деструкции атмосферных паров воды. В случае аммиака подобное явление не наблюдается.

Эти рассуждения неприменимы к планетам типа Юпите-ра. Поскольку водород в изобилии присутствует в атмосфере этой планеты, являясь ее постоянной составляющей, разумно предполагать наличие там аммиака. Эти предположения подтверждены спектроскопическими исследованиями Юпи-тера и Сатурна. Вряд ли на этих планетах имеется жидкий аммиак, но существование аммиачных облаков, состоящих из замерзших кристаллов, вполне возможно.

Рассматривая вопрос о воде в широком плане, мы не вправе априори утверждать или отрицать, что вода как биологический растворитель может быть заменена другими соединениями. При обсуждении этой проблемы нередко проявляется склонность к ее упрощению, поскольку, как правило, учитываются лишь физические свойства альтерна-тивных растворителей. При этом приуменьшается или сов-сем игнорируется то обстоятельство, которое отмечал еще Гендерсон, а именно: вода служит не только растворителем, но и активным участником биохимических реакций. Элемен-ты, из которых состоит вода, “встраиваются” в вещества живых организмов путем гидролиза или фотосинтеза у зеленых растений (см. реакцию 4). Химическая структура живого вещества, основанного на другом растворителе, как и вся биологическая среда, обязательно должны быть иными. Другими словами, замена растворителя неизбежно влечет за собой чрезвычайно глубокие последствия. Никто всерьез не пытался их себе представить. Подобная попытка вряд ли разумна, ибо она представляет собой ни больше ни меньше, как проект нового мира, а это занятие весьма сомнительное. Пока мы не в состоянии ответить даже на вопрос о возмож-ности жизни без воды, и едва ли что-нибудь узнаем об этом, пока не обнаружим пример безводной жизни.

Глава 3. Происхождение жизни: химическая эволюция

Ничтожное ничто - начало всех начал.

Теодор Рётке, "Вожделение"

Теория химической эволюции - современная теория происхождения жизни - также опирается на идею самозарождения. Однако в основе ее лежит не внезапное (de novo) возникновение живых существ на Земле, а образование химических соединений и систем, которые составляют живую материю. Она рассматривает химию древнейшей Земли, прежде всего химические реакции, протекавшие в примитивной атмосфере и в поверхностном слое воды, где, по всей вероятности, концентрировались легкие элементы, составляющие основу живой материи, и поглощалось огромное количество солнечной энергии. Эта теория пытается ответить на вопрос: каким образом в ту далекую эпоху могли самопроизвольно возникнуть и сформироваться в живую систему органические соединения?

Теория Опарина - Юри

Общий подход к химической эволюции первым сформулировал советский биохимик А. И. Опарин (1894–1980). В 1924 г. в СССР была опубликована его небольшая книга, посвященная этому вопросу: в 1936 г. вышло в свет ее новое, дополненное издание (в 1938 г. она была переведена на английский язык). Опарин обратил внимание на то, что современные условия на поверхности Земли препятствуют синтезу большого количества органических соединений, поскольку свободный кислород, имеющийся в избытке в атмосфере, окисляет углеродные соединения до диоксида углерода (углекислого газа, СО 2). Кроме того, он отмечал, что в наше время любое органическое вещество, "брошенное на произвол" на земле, используется живыми организмами (подобную мысль высказывал еще Чарльз Дарвин). Однако, утверждал Опарин, на первичной Земле господствовали иные условия. Можно полагать, что в земной атмосфере того времени отсутствовал кислород, но в изобилии имелись водород и газы, содержащие водород, такие, как метан (СН 4) и аммиак (NН 3). (Подобную атмосферу, богатую водородом и бедную кислородом, называют восстановительной в отличие от современной, окислительной, атмосферы, богатой кислородом и бедной водородом.) По мнению Опарина, такие условия создавали прекрасные возможности для самопроизвольного синтеза органических соединений.

Обосновывая свою идею о восстановительном характере примитивной атмосферы Земли, Опарин выдвигал следующие аргументы.

1. Водород в изобилии присутствует в звездах (рис. 6 и фото 1).

Рис. 6. Линии водорода в спектре яркой звезды Сириус. Этот спектр звезды (белые линии на темном фоне) сравнивается с двумя спектрами, полученными в лаборатории (темные линии на светлом фоне). Все самые яркие и широкие линии в спектре - линии водорода. (Фотографии сделаны на Маунт-Паломарской обсерватории.)

2. Углерод обнаруживается в спектрах комет и холодных звезд в составе радикалов СН и CN, а окисленный углерод проявляется редко.

3. Углеводороды, т. е. соединения углерода и водорода, встречаются в метеоритах.

4. Атмосферы Юпитера и Сатурна чрезвычайно богаты метаном и аммиаком.

Как указывал Опарин, эти четыре пункта свидетельствуют о том, что Вселенная в целом находится в восстановительном состоянии. Следовательно, на первобытной Земле углерод и азот должны были находиться в таком же состоянии.

5. В вулканических газах содержится аммиак. Это, считал Опарин, говорит о том, что азот присутствовал в первичной атмосфере в виде аммиака.

6. Кислород, содержащийся в современной атмосфере, вырабатывается зелеными растениями в процессе фотосинтеза, и, следовательно, по своему происхождению это биологический продукт.

На основании этих рассуждений Опарин пришел к заключению, что углерод на примитивной Земле впервые появился в виде углеводородов, а азот - в виде аммиака. Далее он высказал предположение, что в ходе известных ныне химических реакций на поверхности безжизненной Земли возникали сложные органические соединения, которые по прошествии довольно продолжительного периода времени, по - видимому, и дали начало первым живым существам. Первые организмы, вероятно, представляли собой очень простые системы, способные лишь к репликации (делению) за счет органической среды, из которой они образовались. Выражаясь современным языком, они были "гетеротрофами", т. е. зависели от окружающей среды, которая снабжала их органическим питанием. На противоположном конце этой шкалы находятся "автотрофы" - например, такие организмы, как зеленые растения, которые сами синтезируют все необходимые органические вещества из диоксида углерода, неорганического азота и воды. Согласно теории Опарина, автотрофы появились только после того, как гетеротрофы истощили запас органических соединений в примитивном океане.

Дж. Б.С. Холдейн (1892–1964) выдвинул идею, в некотором отношении сходную со взглядами Опарина, которая была изложена в популярном очерке, опубликованном в 1929 г. Он предположил, что органическое вещество, синтезированное в ходе естественных химических процессов, протекавших на предбиологической Земле, накапливалось в океане, который в конце концов достиг консистенции "горячего разбавленного бульона". По мнению Холдейна, примитивная атмосфера Земли была анаэробной (свободной от кислорода), однако он не утверждал, что для осуществления синтеза органических соединений требовались восстановительные условия. Таким образом, он допускал, что углерод мог присутствовать в атмосфере в полностью окисленной форме, т. е. в виде диоксида, а не в составе метана или других углеводородов. При этом Холдейн ссылался на результаты экспериментов (не собственных), в которых доказывалась возможность образования сложных органических соединений из смеси диоксида углерода, аммиака и воды под действием ультрафиолетового излучения. Однако в дальнейшем все попытки повторить эти эксперименты оказались безуспешными.

В 1952 г. Гарольд Юри (1893–1981), занимаясь не собственно проблемами происхождения жизни, а эволюцией Солнечной системы, самостоятельно пришел к выводу, что атмосфера молодой Земли имела восстановленный характер. Подход Опарина был качественным. Проблема, которую исследовал Юри, была по своему характеру физико-химической: используя в качестве отправной точки данные о составе первичного облака космической пыли и граничные условия, определяемые известными физическими и химическими свойствами Луны и планет, он ставил целью разработать термодинамически приемлемую историю всей Солнечной системы в целом. Юри, в частности, показал, что к завершению процесса формирования Земля имела сильно восстановленную атмосферу, так как ее основными составляющими были водород и полностью восстановленные формы углерода, азота и кислорода: метан, аммиак и пары воды. Гравитационное поле Земли не могло удержать легкий водород - и он постепенно улетучился в космическое пространство. Вторичным следствием потери свободного водорода было постепенное окисление метана до диоксида углерода, а аммиака - до газообразного азота, которые через определенное время превратили атмосферу из восстановительной в окислительную. Юри предполагал, что именно в период улетучивания водорода, когда атмосфера находилась в промежуточном окислительно-восстановительном состоянии, на Земле могло образоваться в больших количествах сложное органическое вещество. По его оценкам, океан, по-видимому, представлял тогда собой однопроцентный раствор органических соединений. В результате возникла жизнь в ее самой примитивной форме.

Теория Юри имела одно важное последствие: она дала толчок успешным экспериментальным исследованиям. Однако, прежде чем говорить об экспериментах, основанных на гипотезе о первобытной атмосфере, богатой водородом, следует выяснить, насколько эта гипотеза соответствует геологическим данным. Этот вопрос активно обсуждался в последние годы. поскольку многие геологи сейчас сомневаются в том, что на Земле вообще когда-либо существовала сильно восстановительная атмосфера. Все эти доводы, лишь несколько видоизмененные, применимы и к Марсу; поэтому здесь целесообразно их вкратце рассмотреть.

Примитивная Земля

Считается, что Солнечная система образовалась из протосолнечной туманности - огромного облака газа и пыли. Возраст Земли, как установлено на основе ряда независимых оценок, близок к 4,5 млрд. лет. Чтобы выяснить состав первичной туманности, разумнее всего исследовать относительное содержание различных химических элементов в современной Солнечной системе. В табл. 3 представлены данные о девяти наиболее распространенных элементах (на долю которых приходится 99,9 % всей массы Солнечной системы), полученные с помощью спектроскопических исследований Солнца; относительное содержание некоторых других элементов определено путем химического анализа метеоритного вещества. Как видно из таблицы, основные элементы - водород и гелий - вместе составляют свыше 98 % массы Солнца (99,9 % его атомного состава) и фактически Солнечной системы в целом. Поскольку Солнце - обычная звезда и к этому типу относится множество звезд в других галактиках, его состав в общем характеризует распространенность элементов в космическом пространстве. Современные представления об эволюции звезд позволяют предположить, что водород и гелий преобладали и в "молодом" Солнце, каковым оно было 4,5 млрд. лет назад.

В табл. 3 приведены также данные об элементном составе Земли. Хотя четыре основных элемента Земли относятся к числу девяти наиболее распространенных на Солнце, по своему составу наша планета существенно отличается от космического пространства в целом. (То же самое можно сказать о Меркурии, Венере и Марсе; однако Юпитер, Сатурн, Уран и Нептун в этот список не попадают.) Земля состоит главным образом из железа, кислорода, кремния и магния. Очевиден дефицит всех биологически важных легких элементов (за исключением кислорода) и поразительна "нехватка" так называемых редких, или благородных, газов. подобных гелию и неону. В целом наша планета выглядит весьма бесперспективно для зарождения какой-либо жизни.

Элементный состав (проценты по массе) Солнечной системы и Земли

В порядке уменьшения относит содержания Солнечная система Земля
Элемент % Элемент %
1 Водород 77 Железо 34.6
2 Гелий 21 Кислород 29,5
3 Кислород 0,83 Кремний 15,2
4 Углерод 0,34 Магний 12,7
5 Неон 0,17 Никель 2,4
6 Азот 0,12 Сера 1,9
7 Железо 0,11 Кальций 1,1
8 Кремний 0,07 Алюминий 1,1
9 Магний 0,06 Натрий 0,57
Общее количество 99,70 Водород+ углерод+ азот 0,05
Неон 1-10^-3
Общее количество 99,12

Главное положение теории Опарина - Юри заключается в том, что атмосфера молодой Земли, соответствовавшая по своему химическому составу протосолнечной туманности, имела ярко выраженный восстановительный характер. Однако, что бы там ни было, сейчас атмосфера Земли имеет окислительный характер. Она содержит 77 % азота, 21 % кислорода, в среднем 1 % водяных паров, около 1 % аргона и ничтожные количества (следы) других газов. Каким же образом могла возникнуть восстановительная атмосфера? Вероятно, основную роль здесь сыграли газы протосолнечной туманности: с момента возникновения Земля была обеспечена водородом и другими легкими элементами, которые, согласно теории Опарина - Юри, необходимы для начала химической эволюции. Учитывая дефицит легких элементов и особенно благородных газов, разумно предположить, что изначально Земля сформировалась вообще без атмосферы. За исключением гелия, все благородные газы - неон, аргон, криптон и ксенон - обладают достаточной удельной массой, чтобы их могло удержать земное тяготение. Криптон и ксенон, например, тяжелее железа. Поскольку эти элементы образуют очень мало соединений, они, по всей видимости, существовали в примитивной атмосфере Земли в виде газов и не могли улетучиться, когда планета достигла наконец своих нынешних размеров. Но поскольку на Земле их содержится в миллионы раз меньше, чем на Солнце, естественно допустить, что наша планета никогда не имела атмосферы, по составу близкой солнечной. Земля образовалась из твердых материалов, которые содержали лишь небольшое количество поглощенного или адсорбированного газа, так что никакой атмосферы сначала не было. Элементы, входящие в состав современной атмосферы, по-видимому, появились на первобытной Земле в виде твердых химических соединений; впоследствии под действием тепла, возникающего при радиоактивном распаде или выделении гравитационной энергии, сопровождающем аккрецию Земли, эти соединения разлагались с образованием газов. В процессе вулканической деятельности эти газы вырывались из земных недр, образуя примитивную атмосферу.

Высокое содержание в современной атмосфере аргона (около 1 %) не противоречит предположению, что благородные газы первоначально отсутствовали в атмосфере. Изотоп аргона, распространенный в космическом пространстве, имеет атомную массу 36, тогда как атомная масса аргона, образовавшегося в земной коре при радиоактивном распаде калия, равна 40. Аномально высокое содержание на Земле кислорода (по сравнению с другими легкими элементами) объясняется тем, что этот элемент способен соединяться с множеством других элементов, образуя такие очень стабильные твердые соединения, как силикаты и карбонаты, которые входят в состав горных пород.

Предположения Юри о восстановительном характере первобытной атмосферы основывались на высоком содержании на Земле железа (35 % общей массы). Он считал, что железо, из которого ныне состоит ядро Земли, первоначально было распределено более или менее равномерно по всему ее объему. При разогреве Земли железо расплавилось и собралось в ее центре. Однако, прежде чем это произошло, железо, содержащееся в том слое планеты, который сейчас называется верхней мантией Земли, взаимодействовало с водой (она присутствовала на примитивной Земле в виде гидратированных минералов, похожих на те, что обнаружены в некоторых метеоритах); в результате в первобытную атмосферу выделились огромные количества водорода.

Исследования, осуществляемые с начала 1950-х годов, поставили под вопрос ряд положений описанного сценария. Некоторые планетологи высказывают сомнения насчет того, что железо, сосредоточенное сейчас в земной коре, могло когда-либо равномерно распределяться по всему объему планеты. Они склоняются к мнению, что аккреция происходила неравномерно и железо конденсировалось из туманности раньше других элементов, образующих ныне мантию и кору Земли. При неравномерной аккреции содержание свободного водорода в примитивной атмосфере должно было оказаться ниже, чем в случае равномерного процесса. Другие ученые отдают предпочтение аккреции, но протекающей таким путем, который не должен приводить к образованию восстановительной атмосферы. Короче говоря, в последние годы были проанализированы различные модели образования Земли, из которых одни в большей, другие в меньшей степени согласуются с представлениями о восстановительном характере ранней атмосферы.

Попытки восстановить события, происходившие на заре формирования Солнечной системы, неизбежно связаны со множеством неопределенностей. Промежуток времени между возникновением Земли и образованием древнейших пород, поддающихся геологической датировке, в течение которого протекали химические реакции, приведшие к появлению жизни, составляет 700 млн. лет. Лабораторные опыты показали, что для синтеза компонентов генетической системы необходима среда восстановительного характера; поэтому можно сказать, что раз жизнь на Земле возникла, то это может означать следующее: либо примитивная атмосфера имела восстановительный характер, либо органические соединения, необходимые для зарождения жизни, откуда-то принесены на Землю. Поскольку даже сегодня метеориты приносят на Землю разнообразные органические вещества, последняя возможность не выглядит абсолютно фантастической. Однако метеориты, по-видимому, содержат далеко не все вещества, необходимые для построения генетической системы. Хотя вещества метеоритного происхождения, вероятно, внесли существенный вклад в общий фонд органических соединений на примитивной Земле, в настоящее время кажется наиболее правдоподобным, что условия на самой Земле имели восстановительный характер в такой степени, что стало возможным образование органического вещества, приведшее к возникновению жизни.

Эксперименты в области предбиологической химии: синтез мономеров

Опарин, по всей видимости, не пытался проверить свою теорию экспериментально. Возможно, он понимал, что существующие аналитические методы непригодны для того, чтобы охарактеризовать сложные смеси органических веществ, которые могли бы образоваться в результате разнообразных реакций между углеводородами, аммиаком и водой. Или, быть может, он довольствовался логической разработкой общих принципов, не считая нужным вникать в многочисленные детали. Как бы то ни было, но теория Опарина никогда не подвергалась проверке до тех пор, пока к ней не обратился Юри. А в 1957 г. его аспирант Стэнли Миллер поставил свой знаменитый эксперимент, благодаря которому проблема происхождения жизни превратилась из чисто умозрительной в научную, в самостоятельный раздел экспериментальной химии.

Моделируя условия па первобытной Земле, Миллер налил на дно колбы немного воды и заполнил ее смесью газов, которые, по мнению Юри, должны были составлять примитивную атмосферу: водорода, метана, аммиака. Затем через газовую смесь пропускался электрический разряд. К концу недели, проводя химический анализ растворенных в воде продуктов, ученый обнаружил среди них значительное количество биологически важных соединений, включая глицин, аланин, аспарагиновую и глутаминовую кислоты - четыре аминокислоты, входящие в состав белков. В дальнейшем эксперимент был повторен с использованием более совершенных аналитических методов и газовой смеси, в большей степени соответствующей принятым ныне моделям примитивной атмосферы. При этом аммиак (который, вероятно, был растворен в первичном океане) в основном заменили азотом, а водород вообще исключили, поскольку сейчас предполагается, что в самом лучшем случае его содержание в примитивной атмосфере было незначительным. В этом эксперименте образовались 12 аминокислот, входящих в состав белков, а также ряд других, небелковых соединений, что представляло не меньший интерес по причинам, о которых мы расскажем впоследствии.

Изучение этих необычных реакций синтеза показало, что электрический разряд вызывает образование определенных первичных продуктов, которые в свою очередь участвуют в последующих реакциях до тех пор, пока полностью не растворятся в воде, образуя конечные продукты. К числу наиболее важных первичных продуктов, возникающих в процессе синтеза, относятся цианистый водород (HCN), формальдегид (НСНО), другие альдегиды и цианоацетилен (HCCCN). Аминокислоты образуются из цианистого водорода по крайней мере двумя путями: в результате взаимодействия в растворе цианида, альдегида и аммиака и путем превращения самого HCN в аминокислоты - через сложную последовательность реакций, протекающих в водном растворе.

По всей вероятности, основным источником энергии на примитивной Земле, как и в настоящее время, было излучение Солнца, а не электрические разряды. Поэтому различные исследователи пробовали использовать в качестве источника энергии, необходимой для синтеза аминокислот, ультрафиолетовое (УФ) излучение. Эксперимент дал положительные результаты. Максимальный выход аминокислот был получен, когда в газовую смесь, предложенную Юри, включали сероводород (H 2 S), который поглощает более длинноволновое УФ-излучение, преобладающее на поверхности Земли. Аминокислоты образовались и в том случае, когда источником энергии служили ударные волны, порождающие короткие "всплески" высокой температуры и давления. Источники энергии такого типа, вероятно, возникали в первичном океане под действием волн, а в атмосфере создавались раскатами грома, электрическими разрядами и падающими метеоритами.

Важным дополнением к опытам Миллера явились эксперименты Хуана Оро, Лесли Оргела и их сотрудников. Они показали, что четыре основания РНК (три из них встречаются и в ДНК) образуются в последующих реакциях, в которые вступают первичные продукты реакций, вызванных искровым разрядом. Характерно, что в серии реакций, происходящих в водном растворе, цианистый водород самоконденсируется с образованием пуринового основания аденина; другая разновидность реакций такого типа производит еще один пурин-гуанин. Пиримидиновые основания цитозин и урацил получаются в заметных количествах из цианоацетилена в реакциях, которые также, возможно, происходили на примитивной Земле. Однако до сих пор не было сообщений о получении в таком "предбиологическом синтезе" тимина, который входит в молекулу ДНК вместо урацила.

Давно известно, что при определенных условиях формальдегид конденсируется в растворе, образуя различные сахара. Одним из продуктов этой реакции является рибоза - углеводный компонент РНК. Таким образом, как видим, большая часть молекулярных компонентов, формирующих генетическую систему, может возникать в результате ряда реакций, вполне вероятных в условиях примитивной Земли.

Метеориты и облака межзвездной пыли

Недавние открытия, касающиеся химического состава метеоритов и межзвездных газово-пылевых облаков, свидетельствуют о том, что в нашей Галактике, как прежде, так и теперь, происходит в широких масштабах синтез биологически важных молекул. Метеориты, о которых пойдет речь, относятся к классу углистых хондритов и составляют около 5 % от общего числа метеоритов, ежегодно падающих на поверхность Земли. Эти интересные объекты представляют собой не претерпевшие существенных изменений "обломки" протосолнечной туманности. Они считаются первичными, поскольку образовались одновременно с Солнечной системой, т. е. 4,5 млрд. лет назад. Метеориты слишком малы, чтобы иметь собственную атмосферу, но по относительному содержанию нелетучих элементов углистые хондриты весьма сходны с Солнцем. Их минеральный состав свидетельствует о том, что они сформировались при низкой температуре и действию высоких температур никогда не подвергались. Они содержат до 20 % воды (связанной в виде гидратов минералов) и до 10 % органического вещества. С прошлого столетия углистые хондриты привлекали к себе внимание из-за их возможной биологической значимости. Шведский химик Якоб Берцелиус, обнаружив в метеорите Алэ (упавшем в 1806 г. на территорию Франции) органические вещества, поставил вопрос, свидетельствует ли их наличие в веществе метеорита о существовании внеземной жизни? Сам он полагал, что нет. Говорят, что у Пастера был зонд специальной конструкции для получения незагрязненных проб из внутренних частей метеорита Оргейль - другого известного хондрита, упавшего также во Франции в 1864 г. Произведя анализ проб на содержание в них микроорганизмов, Пастер получил отрицательные результаты.

До недавнего времени идентификации органических соединений в углистых хондритах не придавалось большого значения, поскольку довольно трудно выявить различия между соединениями, входящими в состав самого метеорита, и загрязнениями, приобретенными при вхождении в атмосферу Земли, ударе о ее поверхность или внесенными впоследствии человеком при сборе образцов. Сейчас благодаря разработке сверхчувствительных аналитических методов и тщательным мерам предосторожности при сборе образцов отношение к этому вопросу в корне изменилось. Два недавно изученных хондрита - метеориты, упавшие в 1969 г. в районе Мерчисона (Австралия) и в 1950 г. в Мюррее (США) - содержали ряд эндогенных аминокислот.

Имеются убедительные свидетельства в пользу того, что в основном обнаруженные аминокислоты не есть загрязнения. Так, многие из них относятся к аминокислотам необычного типа, которые не входят в состав земных организмов. Другое доказательство: некоторые широко распространенные аминокислоты, наличие которых обычно вызывается загрязнением, в метеоритах не обнаруживаются. И наконец, аминокислоты в углистых хондритах встречаются в виде двух оптических изомеров, т. е. в разных пространственных формах, представляющих собой зеркальные отражения друг друга, - это характерно только для аминокислот, синтезированных небиологическим путем, но не тех, которые имеются в живых организмах (см. гл. 1). Набор аминокислот, обнаруженный в метеоритах, напоминает аминокислоты, которые были получены в экспериментах с искровыми разрядами. Наборы эти не идентичны, но сходство настолько заметно, что позволяет предположить, что механизмы синтеза в обоих случаях совпадают. Другой возможный механизм синтеза аминокислот в метеоритах - реакция Фишера-Тропша, названная так в честь двух немецких химиков, которые разработали каталитический процесс получения бензина и других углеводородов из моноксида углерода (СО) и водорода. Оба этих газа широко распространены во Вселенной, как и необходимые для реакции катализаторы, например железо или силикаты. Пытаясь объяснить относительное содержание органических веществ в космическом пространстве на основе этой реакции, Эдвард Андерс и его коллеги из Чикагского университета установили, что при введении в реакционную смесь аммиака образуются аминокислоты, пурины и пиримидины. В этой реакции возникают те же самые промежуточные продукты - водород, цианид, альдегиды, цианоацетилен, - которые получаются в реакциях, происходящих под действием электрических разрядов. По-видимому, при- сутствие в метеоритах углеводородов, а также пуринов и пиримидинов легче объяснить реакцией синтеза Фишера- Тропша, чем реакцией под действием электрического разряда. До сих пор, однако, ни в одном лабораторном опыте не удалось в точности воспроизвести набор веществ, обнаруженных в метеоритах.

Содержание в метеоритах пуриновых и пиримидиновых оснований исследовано в меньшей степени, нежели наличие аминокислот. Тем не менее в Мерчисонском метеорите идентифицированы аденин, гуанин и урацил. Аденин и гуанин найдены в концентрации приблизительно 1-10 частей на миллион, что близко к относительному содержанию аминокислот. Концентрация урацила значительно ниже.

Недавно радиоастрономы открыли органические молекулы в межзвездном пространстве, что, безусловно, пополнило наши знания об органической химии Вселенной. Органические молекулы были обнаружены в гигантских газово-пылевых облаках, которые находятся в тех областях космического пространства, где, как полагают, формируются новые звезды и планетные системы. К моменту написания этой книги помимо присутствующих там, как и ожидалось, молекул водорода было обнаружено около 60 соединений. Наиболее распространен моноксид углерода. Гораздо реже встречаются такие в равной степени интересные соединения, как аммиак, цианистый водород, формальдегид, ацетальдегид (СН 3 СНО), цианоацетилен и вода, т. е. молекулы, которые в лабораторных опытах по химической эволюции рассматриваются как предшественники аминокислот, пуринов, пиримидинов и углеводов.

Эти открытия свидетельствуют о том, что повсюду во Вселенной происходит в широких масштабах синтез органического вещества и среди его конечных продуктов много биологически важных соединений, в том числе основных мономеров генетической системы и их предшественников. Не исключено даже (как предполагалось когда-то), что органические соединения - или, во всяком случае, часть их, - которые легли в основу первых живых организмов, имели внеземное происхождение. Эти открытия позволили осознать тот важный факт, что синтез биологических соединений не есть какой-то специфический химический процесс, возможный лишь в особо благоприятных условиях, характерных для нашей планеты, но представляет собой явление космического масштаба. Это сразу наводит на мысль, что в любой области Вселенной жизнь должна быть основана на химии углерода, сходной с той, что наблюдается на Земле, хотя и не обязательно ей идентичной.

Синтез полимеров в предбиологических условиях

Образование основных мономеров белков и нуклеиновых кислот из газов протосолнечной туманности - это только первый шаг в создании генетической системы. Чтобы сформировать необходимые полимеры, мономеры должны затем соединиться в цепочки. Это трудная проблема, и, хотя на нее обращается пристальное внимание, пока еще не предложено надежных способов образования полимеров, несущих генетическую информацию, из мономеров, существовавших, вероятно, на примитивной Земле.

Синтез полимеров как в живых системах, так и в лаборатории включает в себя этап присоединения очередного мономера к концу растущей цепи. На каждом таком этапе потребляется энергия и происходит выделение молекулы воды. При синтезе белков из аминокислот связь, образующаяся между мономерными звеньями полимера, называется пептидной. На рисунке показана схема образования пептидной связи между двумя молекулами аминокислот.

Буквой R обозначена любая из 20 различных боковых цепей белковых аминокислот. Когда третья молекула аминокислоты прикрепляется к концу дипептида, образуется трипептид и т. д., пока не сформируется полипептид. Такие реакции обратимы: например, дипептид, показанный выше, может, присоединив молекулу воды, вновь превратиться в аминокислоты: этот процесс сопровождается выделением энергии. Белковая молекула представляет собой полипептидную цепь с определенной последовательностью аминокислот, которая придает ей особые свойства и является продуктом длительной эволюции. Каждая цепь состоит из сотен соединенных в одну последовательность аминокислот, а молекулы некоторых белков включают две и более подобных цепей. В результате взаимодействия между составляющими их аминокислотами полипептиды формируют трехмерную структуру, которая и является активной формой белковой молекулы.

Полимеризация нуклеотидов, повторяющихся мономерных звеньев нуклеиновых кислот, приводит к образованию полинуклеотидов, или нуклеиновых кислот. Образование динуклеотида из двух нуклеотидов выглядит следующим образом:

Здесь буквой В обозначено любое из четырех оснований ДНК или РНК; цепочки из атомов углерода (С) соответствуют пятиуглеродному сахару с - ОН-группой, связанной с третьим атомом углерода. (Истинные циклические обозначения структуры углеводов приведены ранее на рис. 1.) Фосфорная кислота присоединена сначала к пятому атому углерода, а затем к углеродным атомам 5 и 3.

Для синтеза полимеров - как белков, так и нуклеиновых кислот - живые клетки вырабатывают богатые энергией молекулы, которые с помощью специфических белков-ферментов обеспечивают энергией каждый этап присоединения мономера. Помимо того что ферменты катализируют соответствующие реакции, они создают условия, необходимые для нормального ее протекания, устраняя все другие мешающие молекулы. Это существенно в случае, когда нужные для реакции молекулы составляют лишь небольшую часть из всех присутствующих в реакционной среде. Удаляются, например, молекулы воды, которые неизменно мешают протеканию реакции дегидратации.

Биологические полимеры могут быть синтезированы в лабораторных условиях и без участия ферментов. Синтез полипептидов и полинуклеотидов стал теперь обычным делом. Белки, идентичные тем, которые синтезируются клеткой, могут быть получены и получаются в лаборатории. При этом используют безводные растворители, очищенные мономеры высокой концентрации, прибегают к разного рода ухищрениям для защиты реакционных групп и применяют реагенты, обеспечивающие реакции энергией, что в сущности соответствует функциям, выполняемым обычно ферментами.

Попробуем сопоставить эти два высокосовершенных способа синтеза биополимеров - реализуемых в клетке и в лаборатории - с условиями, по-видимому, существовавшими на примитивной Земле. Единственным растворителем тогда была вода, необходимые для синтеза мономеры составляли лишь часть общего количества растворенных органических и неорганических веществ, реагенты, имевшиеся в достаточном количестве, были, вероятно, довольно просты, и, разумеется, полностью отсутствовали ферменты. До сих пор не ясно, как при столь неблагоприятных условиях могли образоваться даже короткие полимеры. По всей видимости, первобытный бульон состоял из множества самых разнообразных органических соединений. Чтобы произошел синтез полипептида или полинуклеотида, в бульоне должна была возникнуть особая группа соединений, которые сконцентрировались бы и соединились друг с другом. Представить себе этот первый этап, наверное, особенно трудно. Простой концентрации первичного бульона здесь явно недостаточно. Скорее всего, этот бульон представлял собой сложную смесь многих соединений, которые должны были мешать образованию полимеров, прикрепляясь, например, к концу растущей цепи и останавливая тем самым ее рост.

Фото 1. Туманность в созвездии Орион. Гигантские массы газа и пыли, которые окружают центральную звезду в группе, образующей "меч" Ориона, - еще одна иллюстрация распространенности во Вселенной водорода. Излучение нескольких "горячих" звезд в этой туманности вызывает свечение окружающих их газов на определенных, характерных для них частотах. Красный цвет на фотографии соответствует свечению водорода, голубой-кислорода и азота, белый - смеси газов. (© Калифорнийский технологический институт, 1959 г.)

Фото 3. Большое Красное Пятно - долгоживущее образование в атмосфере Юпитера, окруженное турбулентной облачностью. (Фотография получена космической станцией "Вояджер"; НАСА и Лаборатория реактивного движения.)

Фото 4. На фотографии северного полушария Сатурна, сделанной

Фото 8. Озерцо Дон Жуан в Антарктиде. (Фото Роя Кэмерона.)

Возможное решение этой проблемы связано с адсорбцией необходимых молекул на поверхности глинистых минералов. Этому механизму особое значение придавал покойный Дж. Д. Бернал (1901–1971), известный английский ученый-кристаллограф. По сравнению с органическими соединениями глинистые минералы обладают большой адсорбционной способностью. Кроме того, они по-разному взаимодействуют с различными типами соединений, которые адсорбируют. Сам Бернал не был уверен в правильности своего предположения; это объяснялось тем, что кремний, основной составляющий элемент глин, не играет почти никакой роли в современной биохимии. Тем не менее адсорбция считается самым вероятным механизмом (хотя это и не доказано) предбиологических процессов разделения и концентрации.

Несмотря на сомнения Бернала, другие ученые без колебаний отвели глинистым минералам главную роль в происхождении жизни. В самом деле, А. Г. Кернс-Смит, химик из университета в Глазго, предположил, что жизнь началась с кристаллов, образующих минералы. Обладая способностью воспроизводить себе подобных, неорганические кристаллы как бы демонстрируют тем самым зачаточные генетические свойства. У них обнаруживается также ограниченная способность к мутациям, которая проявляется в том, что в регулярном расположении атомов в кристалле могут возникать дефекты. Такие обладающие слоистой структурой минералы, как глины, склонны копировать дефекты одного слоя в структуре следующего, что можно рассматривать как своеобразную генетическую память. Замечено, что дефекты в структуре кристаллических граней часто оказываются участками химической активности, включая катализ. Кернс-Смит высказал предположение, что такое простое органическое соединение, как формальдегид, синтез которого мог катализироваться минералом, несущим подобный дефект, обладало способностью ускорять процесс воспроизведения дефектного кристалла и повышать точность копирования, в результате чего численность таких кристаллов по сравнению с другими типами быстро возрастала. С этого началась эволюция белково-нуклеиновой генетической системы, которая в дальнейшем отделилась от своего минерального предка. Однако это весьма умозрительное предположение, не имеющее почти никаких экспериментальных подтверждений.

При всех немалых трудностях, связанных с пониманием условий возникновения первых биологически важных полимеров, следует иметь в виду некоторые "смягчающие обстоятельства". Вполне возможно, что для построения первой генетической системы сначала потребовались не большие, сложно организованные молекулы, которые мы находим в современных организмах, а только короткие полимеры. Первому организму не обязательно следовало быть высокоэффективным. Поскольку его жизнь протекала в "райских кущах" при отсутствии врагов и проблем, связанных с добыванием пищи, ему достаточно было просто способности довольно быстро воспроизводить самого себя, чтобы опережать свою собственную химическую деградацию. Кроме того, химические процессы, предшествовавшие появлению жизни, протекали широко как в пространстве, так и во времени. В течение сотен миллионов лет примитивная Земля представляла собой грандиозную лабораторию, где в силу гигантских масштабов происходящего могли реализоваться даже такие процессы, которые кажутся нам маловероятными.

Такие соображения, конечно, не дают нам права утверждать, что мы понимаем, как образовались первые биополимеры. Однако они позволяют предполагать, что проблема, по-видимому, не столь трудна, как считается. Последние результаты, полученные в лаборатории Оргела, показали возможность образования полинуклеотидов на исходной полинуклеотидной цепи способом, аналогичным естественной дупликации генов, но без участия фермента. Этого замечательного результата удалось достичь благодаря тому, что был найден метод введения в реакцию энергии: несмотря на отсутствие ферментов, этот метод сходен с естественным механизмом, с помощью которого клетка обеспечивает энергией синтез полинуклеотидов. Эти данные делают более правдоподобным предположение, что аналогичный процесс мог играть важную роль на ранних стадиях эволюции генетической системы. Кроме того, недавно было доказано, что некоторые виды РНК обладают каталитическими свойствами, которые обычно приписывались только белкам. Все эти результаты позволяют предположить, что примитивная генетическая система могла быть построена без белков - лишь из одной РНК. Если это было действительно так, то загадки, связанные с происхождением жизни, значительно упрощаются.

Проблемы, касающиеся появления первой молекулы нуклеиновой кислоты, генетического кода и всего механизма переноса информации от нуклеиновых кислот к белкам, по-прежнему остаются нерешенными, однако и здесь заметен некоторый прогресс, насколько это позволяет современный уровень знаний. Поэтому, заканчивая наш краткий обзор современных представлений о природе и происхождении жизни на пашей планете, мы обходимся без претенциозных рассуждений о возникновении "первичной протоплазменной первобытно-атомной глобулы". Нет сомнений, что движение вперед, к решению проблемы происхождения жизни, будет продолжаться. Между тем изложенные нами принципы имеют настолько общий характер, что вполне применимы к проблемам возникновения жизни в любой области Вселенной. Теперь мы обратимся к обсуждению вопросов о жизни на других планетах Солнечной системы - этот предмет и составляет содержание остальных глав нашей книги.

Из книги Геном человека: Энциклопедия, написанная четырьмя буквами автора Тарантул Вячеслав Залманович

Происхождение и эволюция человекообразных обезьян Примерно на рубеже олигоцена и миоцена (23 млн лет назад), или чуть раньше (см. рис. 2) происходит разделение дотоле единого ствола узконосых обезьян на две ветви: церкопитекоидов, или собакоподобных (Cercopithecoidea) и гоминоидов,

Из книги КЛЕЙМО СОЗДАТЕЛЯ. Гипотеза происхождения жизни на Земле. автора Филатов Феликс Петрович

ЧАСТЬ III. ПРОИСХОЖДЕНИЕ И ЭВОЛЮЦИЯ ГЕНОМА ЧЕЛОВЕКА

Из книги Теория адекватного питания и трофология [таблицы текстом] автора

Глава 211. Абиогенная (химическая) эволюция (VIII) Гипотезы о происхождении жизни на Земле исходят в основном из двух предположений. Это либо гипотеза панспермии (что многих не устраивает, поскольку, как они полагают, лишь отодвигает событие в прошлое и не решает задачу), либо

Из книги Теория адекватного питания и трофология [таблицы картинками] автора Уголев Александр Михайлович

Из книги Распространненость жизни и уникальность разума? автора Мосевицкий Марк Исаакович

1.8. Происхождение и эволюция эндо- и экзотрофии Трофика и происхождение жизни В свете современных знаний ясно, что механизмы эндотрофии и экзотрофии родственны, а не противоположны, как представлялось ранее, когда экзотрофию рассматривали в качестве гетеротрофии, а

Из книги Удивительная палеонтология [История земли и жизни на ней] автора Еськов Кирилл Юрьевич

Глава IV. Первые проявления жизни на Земле; Жизнь имеет земное или внеземное

Из книги Логика случая [О природе и происхождении биологической эволюции] автора Кунин Евгений Викторович

ГЛАВА 4 Происхождение жизни: абиогенез и панспермия. Гиперцикл. Геохимический подход к проблеме Рассмотрев вопросы, связанные с эволюцией самой Земли, мы приступаем теперь к изучению эволюции жизни на ней. Сразу оговорюсь: я не собираюсь ни углубляться в дебри

Из книги Лестница жизни [Десять величайших изобретений эволюции] автора Лейн Ник

Глава 12 Происхождение жизни. Возникновение трансляции, репликации, метаболизма и мембран: биологический, геохимический и космологический подходы Пер. А. НеизвестногоВ предыдущей главе мы обсудили возможные сценарии возникновения клеток и (будем надеяться) достигли

Из книги Рождение сложности [Эволюционная биология сегодня: неожиданные открытия и новые вопросы] автора Марков Александр Владимирович

Приложение II Эволюция космоса и жизни: вечная инфляция, теория «мира многих миров», антропный отбор и грубая оценка вероятности возникновения жизни Пер. П. АверинаКраткое введение в инфляционную космологию для неспециалистовТеория «мира многих миров» (МММ),

Из книги Современное состояние биосферы и экологическая политика автора Колесник Ю. А.

Глава 1. Происхождение жизни Планета бешено вращалась. Ночь и день сменяли друг друга с головокружительной быстротой: день длился всего пять-шесть часов. Тяжелая Луна угрожающе висела в небе (гораздо ближе, чем сегодня), отчего казалась крупнее. Звезды выглядывали редко,

Из книги Антропология и концепции биологии автора Курчанов Николай Анатольевич

Глава 1. Происхождение жизни Вопрос о происхождении жизни волнует всех, и очень жаль, что он пока еще далек от разрешения. Основная сложность тут в том, что путь от неорганических молекул к первой живой клетке был долгим и трудным. За один шаг такие превращения не

Из книги Клеймо создателя автора Филатов Феликс Петрович

2.3. Химическая эволюция на Земле Одна из современных гипотез утверждает, что наша планета никогда не была расплавлена полностью (Лосев, 1985, с. 40–41). Предположение о том, что Земля сформировалась в виде относительно холодного твердого тела и затем постепенно разогревалась

Из книги автора

Происхождение и эволюция австралопитеков В настоящее время большинство антропологов считают, что род Homo берет свое начало от группы австралопитеков (хотя следует сказать, что некоторые ученые отрицают этот путь). Сами австралопитеки эволюционировали из дриопитековых

Из книги автора

Глава 211. Абиогенная (химическая) эволюция (VIII) Гипотезы о происхождении жизни на Земле исходят в основном из двух предположений. Это либо гипотеза панспермии (что многих не устраивает, поскольку, как они полагают, она лишь отодвигает событие в прошлое и не решает